Twenty-one year dynamics of vegetation from long-term plots in East European tundra

Cover Page

Cite item

Full Text

Abstract

The results of vegetation monitoring from 1999 to 2020 on 12 plots laid out in different types of communities on Cape Bolvansky Nos in the northwest of the Bolshezemelskaya tundra are presented (Fig. 1). The area is located on the border between the southern and typical tundra subzones.

On five long-term plots with clay-loam patches of bare ground sparse shrubby willowsedge-dwarf shrub-moss tundra were formed. They belong to zonal vegetation – ass. Dryado octopetalae–Hylocomietum splendentis Andreev 1932 subass.caricetosum capillaris Lavrinenko et Lavrinenko 2018 (Table 1) in the class Carici arctisibiricaeHylocomietea alaskani Matveyeva et Lavrinenko 2021 prov., in the order Caricetalia arctisibiricae-lugentis Matveyeva et Lavrinenko 2021 prov. and in the alliance Dryado octopetalaeCaricion arctisibiricae Koroleva et Kulyugina in Chytrý et al. 2015. Plot M6 has a 2-element horizontal structure: large loam patches (3.0–4.5 m long, 1.0–1.5 cm wide) elongated along the slope alternate with flat areas of turf between them, dominated by dwarf shrubs Dryas octopetala subsp. subincisa and Salix reticulata and mosses Aulacomnium turgidum, Hylocomium splendens, Tomentypnum nitens; rims are absent. Salix lanata grows in groups in shallow depressions with mosses. Plots M5, M9, M11 and M12 occupy the lower parts of the hill slopes and deluvial plumes; 3-element horizontal structure – rounded or oval patches of loam (1.5-3.0 (up to 5.0) m in diameter) are surrounded by rims, and such ring structures are separated by troughswith hygrophilous mosses (Aulacomnium palustre, Ptilidium ciliare, Sphagnum spp.), where shrub willows (mainly Salix glauca) grow. The rims are well formed and usually covered with dwarf shrubs (Arctous alpina, Dryas octopetala subsp. subincisa, Empetrum hermaphroditum, Salix reticulata), sedge Carex bigelowii subsp. arctisibirica and mosses (Aulacomnium turgidum, Dicranum elongatum, Hylocomium splendens, Rhytidium rugosum).

Three long-term plots are occupied by dwarf shrub-lichen tundra with a rare layer of elfin Betula nana, which is affiliated with the class Loiseleurio procumbentisVaccinietea Eggler ex Schubert 1960, the order Deschampsio flexuosae–Vaccinietalia myrtilli Dahl 1957, and the alliance Loiseleurio-Arctostaphylion Kalliola ex Nordhagen 1943 (Table 2). On plots M3 and M4, located on light loamy soils on slightly convex tops of hills in conditions of good drainage, elfin birch dwarf shrub-lichen communities belonging to ass.Loiseleurio-Diapensietum (Fries 1913) Nordhagen 1943 subass. salicetosum nummulariae Koroleva 2006 were formed. On plot M2, located in the lower part of the gentle slope of the hill under conditions of good snow cover in winter, a community with an almost continuous lichen cover of chionophilic Сladonia was formed – ass. Cladonietum rangiferino-arbusculae Lavrinenko et Lavrinenko 2020.

The vegetation of plots M1 and M7, located in relief depressions on peat-gley soil, belongs to the class Oxycocco-Sphagnetea Br.-Bl. et Tx. ex Westhoff et al. 1946 and the alliance Oxycocco microcarpi–Empetrion hermaphroditi Nordhagen ex Du Rietz 1954. They are cotton grass tussocks (Eriophorum vaginatum) with dwarf shrub-cloudberry-lichen-moss cover belonging to ass. Pleurozio schreberi–Eriophoretum vaginati subass.sphagnetosum lenenses Lavrinenko et Lavrinenko in Lavrinenko et al. 2022 (Table 3).

The vegetation of plots M8 and M10 is represented by community complexes on polygonal peatlands. On the polygons of both plots, a dwarf shrub-cloudberry-lichen community ass.Rubo chamaemori–Dicranetum elongati Dedov ex Lavrinenko et Lavrinenko 2015 assigned to the alliance Rubo chamaemori–Dicranion elongati Lavrinenko et Lavrinenko 2015 in the class Oxycocco-Sphagnetea was formed.

The results of the 21-year monitoring period made it possible to set some trends in changing the composition and structure of plant communities of different syntaxa.

The main part of plant species was found on the plots in all survey years (1999, 2014, 2017 and 2020). On five plots with the most floristically rich zonal tundra communitis, a total of 160 species were identified, of which 22 (14%) were found once. On three plots with dwarf shrub-lichen communities and on four plots with boggy communities, 7 (8%) out of 90 species and 10 (11%) out of 95 species, respectively, were also identified once. Within each plot, the change in the total number of species over the years was in the range of 7–24%. It is important to understand that such variability in composition is due to identifying (appearance) / missing (disappearance) of rare and single species, mainly mosses and lichens (including crustaceous ones).

On many plots there was a general increase in herbaceousness (due to sedge, grasses, cotton grass, cloudberries) and a particularly noticeable increase in activity in Equisetum arvense, which began to create a green aspect.

The greatest structural transformations took place in the communities ass. Dryado octopetalae–Hylocomietum splendentis subass.caricetosum capillaris with 2- or 3-element horizontal structure. The main finding is the disappearance of the “spongy” nanorelief (due to the result of “frost boiling”) on patches of bare ground and their gradual overgrowth with cryptogamic crusts, small flowering plants, mosses and dwarf shrubs. In the zonal tundras, the clear module structure “patch–rim–trough” began to disappearas a result of overgrowing of loam patches and partial subsidence of rims (in some places rims merged with patches overgrown with dwarf shrub-lichen cover and began to look like a flat turf). In dwarf shrub-lichen communities ass.Loiseleurio-Diapensietum subass.salicetosum nummulariae, the patches began almost completely covered with lichens, mosses, and dwarf shrubs, and the surface was leveled due to the disappearance of the difference in height between the surface of overgrown patches and the turf. New formation of patches has not been found anywhere, but single small (up to 20 cm in diameter) fresh outpourings of loam were detected within the old spots on plot M4 at the top of the hill.

The height of the willows Salix glauca and S. lanata, which in 1999 was predominantly 10–15 cm, has increased 1.5–2.5 times over the years of monitoring at all plots.

A gradual decrease in lichen cover in boggy cottongrass tussock communities of ass.Pleurozio schreberi–Eriophoretum vaginati subass.sphagnetosum lenenses and their further replacing with dwarf shrubs and green (and later – sphagnum) mosses was revealed.

Our results generally agree with the trends in vegetation transformation under the influence of climatic factors, established at long-term plots in the American sector of the Arctic [Gould et al., 2009; Elmendorf et al., 2012; Jorgenson et al., 2015; Harris et al., 2021]. Noting the heterogeneity of vegetation responses to climate change, the authors report on an increase in the total projective cover and a decrease in the coverage of bare ground patches in tundra ecosystems, as well as an increase in the abundance and height of evergreen and deciduous shrubs and dwarf shrubs, grasses, when reducing of lichens.

About the authors

Olga Vasilevna Lavrinenko

Komarov Botanical Institute RAS, St.-Petersburg;
Nenetsky State Nature Reserve, Naryan-Mar

Author for correspondence.
Email: lavrino@mail.ru
Russian Federation

Igor Anatolievich Lavrinenko

Komarov Botanical Institute RAS, St.-Petersburg

Email: lavrinenkoi@binran.ru

References

  1. Доклад об особенностях климата на территории Российской Федерации за 2020 год. 2021. М. 104 с. URL. http://www.meteorf.ru/upload/pdf_download/doklad_klimat2020.pdf (датаобращения: 01.05.2022) [Report on climate features in the Russian Federation for 2020.M. P.104. URL. http://www.meteorf.ru/upload/pdf_download/doklad_klimat2020.pdf (date of the application: 01.05.2022)(in Russian)].
  2. Лавриненко И.А. и Лавриненко О.В. 2017a. Заболоченные сообщества мониторинговых площадок стационара «Болванский» // Материалы международного полевого симпозиума «Болотные экосистемы Северо-Востока Европы и проблемы экологической реставрации в зоне многолетней мерзлоты» 22 июля - 4 августа 2017 г. Инта-Сыктывкар-Нарьян-Мар. С. 91-93 [LavrinenkoI.A. iLavrinenkoO.V. 2017a.Zabolochennyesoobshchestvamonitoringovykhploshchadokstatsionara «Bolvanskii» // MaterialsoftheInternationalFieldSymposium «BolotnyeekosistemySevero-VostokaEvropyiproblemyekologicheskoirestavratsiivzonemnogoletneimerzloty» 22 July - 4 August 2017. Inta-Syktyvkar-Nar'yan-Mar. P. 91-93 (inRussian)].
  3. Лавриненко О.В. и Лавриненко И.А. 2017b. Стабильность тундровых сообществ в изменяющемся климате // Растения в холодном регионе. Сборник материалов Всероссийской научно-практической конференции. Якутск, 20-21 октября 2016 г. Якутск. С. 140-149 [LavrinenkoO.V. iLavrinenkoI.A. 2017b.Stabil'nost' tundrovykhsoobshchestvvizmenyayushchemsyaklimate // Rasteniyavkholodnomregione. A collection of materials of the All-Russian Scientific and Practical Conference.Yakutsk, October 20-21, 2016 Yakutsk.P. 140-149 (in Russian)].].
  4. ЛавриненкоО.В. иЛавриненкоИ.А. 2018. Зональная растительность равнинных восточноевропейских тундр // Растительность России. №. 32. С. 35–108. doi: 10.31111/vegrus/2018.32.35 [LavrinenkoO.V. andLavrinenkoI.A. 2018.Zonal'nayarastitel'nost' ravninnykhvostochnoevropeiskikhtundr // Rastitel'nost' Rossii. N. 32. P. 35–108. doi: 10.31111/vegrus/2018.32.35(in Russian)]
  5. Лавриненко О.В. и Лавриненко И.А. 2020. Стабильность состава и структуры тундровых сообществ в изменяющемся климате // Тез. докл. международной научной конференции «Комплексные исследования природной среды Арктики и Антарктики». г. Санкт-Петербург, 2-4 марта 2020 г. СПб: ГНЦ РФ ААНИИ. С. 387-391 [LavrinenkoO.V. iLavrinenkoI.A. 2020.Stabil'nost' sostava i struktury tundrovykh soobshchestv v izmenyayushchemsya klimate // Abstracts of the International Scientific Conference "Comprehensive Studies of the Natural Environment of Arctic and Antarctic". St. Petersburg, March 2-4, 2020. SPb: SSC RF AARI. P. 387-391(in Russian)].
  6. Лавриненко О.В., Петровский В.В., Лавриненко И.А. 2016. Локальные флоры островов и побережья юго-восточной части Баренцева моря // Ботанический журнал. Т. 101. № 10. С. 1144-1190 [LavrinenkoO.V., PetrovskiiV.V., LavrinenkoI.A. 2016.Lokal'nyefloryostrovovipoberezh'yayugo-vostochnoichastiBarentsevamorya // BotanicheskiiZhurnal. V. 101. N. 10. P. 1144-1190 (inRussian)].
  7. Малкова Г.В., Коростелев Ю.В., Садуртдинов М.Р., Скворцов А.Г., Царев А.М. 2018. Современные климатические изменения и температурный режим многолетнемерзлых пород Европейского Севера // Сборник докладов расширенного заседания научного совета по криологии Земли РАН «Актуальные проблемы геокриологии». МГУ им. М.В. Ломоносова, 15-16 мая 2018 г. М.: «КДУ», «Университетская книга». С. 98–104 [MalkovaG.V., KorostelevYu.V., SadurtdinovM.R., SkvortsovA.G., TsarevA.M. 2018.SovremennyeklimaticheskieizmeneniyaitemperaturnyirezhimmnogoletnemerzlykhporodEvropeiskogoSevera // A collection of reports of the expanded meeting of the Scientific Council on Cryology of the Earth of the Russian Academy of Sciences "Aktual'nye problemy geokriologii" Moscow State University. M.V. Lomonosov, May 15-16, 2018. M.: «KDU», «Universitetskaya kniga». P. 98–104 (in Russian)].
  8. МалковаГ.В., СкворцовА.Г., ЦаревА.М., СадуртдиновМ.Р. 2019. ОтчетпоэкспедицииПечорскогополевогоотрядаИКЗ СО РАН (16 августа 2019 г. – 2 сентября 2019 г.). Фонды ГПЗ «Ненецкий». C. 20 [MalkovaG.V., SkvortsovA.G., TsarevA.M., SadurtdinovM.R. 2019. Otchet po ekspeditsii Pechorskogo polevogo otryada IKZ SO RAN (August 16, 2019 - September 2, 2019).FondyGPZ «Nenetskii».P. 20 (in Russian)]
  9. Матвеева Н.В. и Заноха Л.Л. 2013. Стабильность растительного покрова при существенной трансформации ландшафта в тундрах Западного Таймыра // Тр. Всерос. научной конференции «Биоразнообразие экосистем Крайнего Севера: инвентаризация, мониторинг, охрана» (Сыктывкар, 3-7 июня 2013 г.). Сыктывкар. С. 96-106 [MatveevaN.V. iZanokhaL.L. 2013.Stabil'nost' rastitel'nogo pokrova pri sushchestvennoi transformatsii landshafta v tundrakh Zapadnogo Taimyra // Proceedings of the All-Russian Scientific Conference “Biostasis of the Ecosystems of the Far North: inventory, monitoring, protection” (Syktyvkar, June 3-7, 2013). Syktyvkar. P. 96-106 (in Russian)].
  10. МатвееваН.В. иЛавриненкоО.В. 2021. Чек-лист синтаксонов Российской Арктики: текущее состояние классификации растительности // Растительность России. № 42. C. 3-41. doi: 10.31111/vegrus/2021.42.3 [MatveevaN.V. iLavrinenkoO.V. 2021. Chek-list sintaksonov Rossiiskoi Arktiki: tekushchee sostoyanie klassifikatsii rastitel'nosti // Vegetation of Russia. N 42.P. 3-41. doi: 10.31111/vegrus/2021.42.3(in Russian)]
  11. Матвеева Н.В.2020. Масштабная трансформация водораздельных увалов в связи с деградацией жильных льдов в Арктике // Комплексные исследования природной среды Арктики и Антарктики. Тезисы докладов международной научной конференции (Санкт-Петербург, 02–04 марта 2020 года). Санкт-Петербург. С. 391-394 [MatveevaN.V. 2020.Masshtabnayatransformatsiyavodorazdel'nykhuvalovvsvyazisdegradatsieizhil'nykhl'dovvArktike // KompleksnyeissledovaniyaprirodnoisredyArktikiiAntarktiki. Abstracts of the International Scientific Conference (St. Petersburg, March 02–04, 2020). St. Petersburg. P. 391-394 (inRussian)].
  12. Оберман Н.Г. 2001. Внутривековая динамика мерзлой зоны европейского северо-востока России // Материалы Второй конф. геокриологов России. Т. 2. М.: Изд-во Моск. ун-та. С. 212–217 [ObermanN.G. 2001.Vnutrivekovaya dinamika merzloi zony evropeiskogo severo-vostoka Rossii // Materials of the second conf. geocryologists of Russia. V. 2. M.: Publishing House MSU. P. 212–217(in Russian)].
  13. ОсадчаяГ.Г. иТумельН.В. 2012. Локальные ландшафты как индикаторы геокриологической зональности (на примере Европейского Северо-Востока) // Криосфера Земли. Т. 16. № 3. С. 62–71 [OsadchayaG.G. iTumel' N.V. 2012.Lokal'nyelandshaftykakindikatorygeokriologicheskoizonal'nosti (naprimereEvropeiskogoSevero-Vostoka) // Earth’sCryosphere. V. 16. N 3.P. 62–71 (inRussian)].
  14. Потёмкин А.Д. и Софронова Е.В. 2009. Печеночники и антоцеротовые России. Т. 1. Санкт-Петербург – Якутск. 368 с. [PotemkinA.D. iSofronovaE.V. 2009.Pechenochniki i antotserotovye Rossii.V. 1. St. Petersburg – Yakutsk. 368 p. (in Russian)].
  15. Секретарева Н.А. 2004. Сосудистые растения Российской Арктики и сопредельных территорий. М. 131 с. [SekretarevaN.A. 2004.SosudistyerasteniyaRossiiskoiArktikiisopredel'nykhterritorii.M. 131 p.(in Russian)].
  16. Druckenmiller M. L., Moon T., Thoman R. The Arctic / State of the Climate in 2020 // Bull. Amer. Meteor. Soc. 2021. Vol. 102. N 8. P. 263–315. doi: 10.1175/BAMS-D-21-0086.1
  17. Elmendorf S.C., Henry G.H.R., Hollister R.D., Björk R.G., Boulanger-Lapointe N., Cooper E.J., and 41 others. 2012. Plotscale evidence of tundra vegetation change and links to recent summer warming // Nature Climate Change. N 2. P. 453-457. doi: 10.1038/nclimate1465.
  18. Gould W.A., Mercado-Díaz J.A., Zimmerman J.K. 2009. Twenty year record of vegetation change from long-term plots in Alaskan tundra // Long Term Ecological Research Network All Scientists Meeting (Estes Park, September 14-16 2009). Abstract C11C-0524.
  19. Harris J.A., Hollister R.D., Botting T.F., Tweedie C.E., Betway K.R., May J.L., Barrett R.T.S., Leibig J.A., Christoffersen H.L., Vargas S.A., Orejel M., Fuson T.L. 2021. Understanding the climate impacts on decadal vegetation change in northern Alaska // Arctic Science. Arctic Science 00: 1–21 (0000) e-First. doi: 10.1139/as-2020-0050
  20. Ignatov, M.S., O.M. Afonina, E.A. Ignatova, A. Abolina, T.V. Akatova, E.Z. Baisheva, L.V. Bardunov, E.A. Baryakina, O.A. Belkina, A.G. Bezgodov, M.A. Boychuk, V.Ya. Cherdantseva, I.V. Czernyadjeva, G.Ya. Doroshina, A.P. Dyachenko, V.E. Fedosov, I.L. Goldberg, E.I. Ivanova, I. Jukoniene, L. Kannukene, S.G. Kazanovsky, Z.Kh. Kharzinov, L.E. Kurbatova, А.I. Maksimov, U.K. Mamatkulov, V.A. Manakyan, O.M. Maslovsky, M.G. Napreenko, T.N. Otnyukova, L.Ya. Partyka, O.Yu. Pisarenko, N.N. Popova, G.F. Rykovsky, D.Ya. Tubanova, G.V. Zheleznova & V.I. Zolotov 2006. Check-list of mosses of East Europe and North Asia. Arctoa 15: 1–128.
  21. Jorgenson J.C., Raynolds M.K., Reynolds J.H., Benson A.-M. 2015. Twenty-Five Year Record of Changes in Plant Cover on Tundra of Northeastern Alaska // Arctic, Antarctic, and Alpine Research. V. 47. N 4. P. 785-806. doi: 10.1657/AAAR0014-097
  22. Lavrinenko O.V., Tyusov G.A., Petrovsky V.V. 2022. Impact of climate warming on floristic diversity of the East European tundra // Environmental dynamics and global climate change. V. 13. N. 1. P. 35–48. doi: 10.18822/edgcc101643
  23. Myers-Smith I.H., Hik D.S., Kennedy C.E., Cooley D., Johnstone J.F., Kenney A.J., Krebs C.J. 2011. Expansion of canopy forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada // Ambio. N 40. P. 610-623. doi: 10.1007/s13280-011-0168-y
  24. Myers-Smith I.H., Grabowski M.M., Thomas H.J.D., Angers-Blondin S., Daskalova G.N., Bjorkman A.D., Cunliffe A.M., Assmann J.J., Boyle J.S., Mcleod E., Mcleod S., Joe R., Lennie P., Arey D., Gordon R.R., Eckert C.D. 2019. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change // Ecological Monographs. V. 89. N 2. e01351. URL. https://www.jstor.org/stable/26641244
  25. Post E. and Forchhammer M.C. 2008. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch // Philosophical Transactions of the Royal Society Biological Sciences. V. 363. N 1501. P. 2369-2375. doi: 10.1098/rstb.2007.2207
  26. Raynolds M.K., Walker D.A., Balser A., Bay C., Campbell M., Cherosov M.M., Daniëls F.J.A., Eidesen P.B., Ermokhina K.A., Frost G.V., Jedrzejek B., Jorgenson M.T., Kennedy B.E., Kholod S.S., Lavrinenko I.A., Lavrinenko O.V., Magnússon B., Matveyeva N.V., Metúsalemsson S., Nilsen L., Olthof I., Pospelov I.N., Pospelova E.B., Pouliot D., Razzhivin V., Schaepman-Strub G., Šibík J., Telyatnikov M.Yu., Troeva E. A raster version of the Circumpolar Arctic Vegetation Map (CAVM) // Remote Sensing of Environment. 2019. 232. Journal homepage: www.elsevier.com/locate/rse doi: 10.1016/j.rse.2019.111297
  27. Santesson R., Moberg R., Nordin A., Tønsberg T., Vitikainen O. 2004. Lichenforming and lichenicolous fungi of Fennoscandia. Museum of Evolution. Uppsala University. 359 p.
  28. Walker D.A., Raynolds M.K., Daniëls F.J.A., Einarsson E., Elvebakk A, Gould W., Katenin A.E., Kholod S.S., Markon C.J., Melnikov E., Moskalenko N.G., Talbot S., Yurtsev B.A.,and the other members of the CAVM Team. 2005. The Circumpolar Arctic Vegetation Map // Journal of Vegetation Science. Vol. 16. N 3. P. 267-282. doi: 10.1111/j.1654-1103.2005.tb02365.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Lavrinenko O.V., Lavrinenko I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies