What is the maximal possible soil methane uptake?

Cover Page

Cite item

Full Text

Abstract

The spread of published values of the rate of methane uptake by soils makes up several orders of magnitude from 0.0001 to 1 mg·m-2·h-1, which is comparable in magnitude to the spread of estimates of the release of CH4 out of waterlogged soils. The high values of CH4 emissions out of waterlogged soils are well explained, since with high methane production, it can be removed from the soil at almost any speed through a convective (most often bubble) transport mechanism. But when being absorbed by the soil, methane can penetrate in it only due to an apparently slow diffusion mechanism. Thus, the question arises of the maximum theoretically justified assessment of methane consumption by the soil. The aim of our work was to try to quantify the maximum possible amount of CH4 consumption by the soil relying on a strict basis of soil biokinetics and physics.

To estimate the maximum specific absorption flux of CH4 by the soil, we used the "mass conservation equation" [Walter et al., 1996; Zhuang et al., 2004; Глаголев, 2006, p. 316; 2010, p. 35-36]:

 

Ct = -¶Fz + Qebull + Qplant + Rprod + Roxid,

 

where C (mg/m3) is the concentration of methane at time t at depth z; F (mg·m-2·h-1) is the specific flux of methane due to diffusion; Qebull and Qplant (mg·m–3·h-1) are the rates of change in methane concentration at time t at depth z due to the formation of bubbles and drainage through the roots of plants, respectively; Rprod and Roxid (mg·m-3 · h-1) are the rates of formation and consumption of methane, respectively.

Since we going to estimate the flux of CH4 only at its maximum possible consumption, the equation is simplified, as far as its terms accounted for the formation and transport of methane (Rprod, Qebull, Qplant) will be equal to 0. Finally, we will consider the system in a steady state, i.e. Ct = 0. Thus:F(t,z)/¶z = Roxid(t,z).

Using Fick's first law to calculate the diffusion flux (used with a modified sign compared to its traditional form):

 

F(t,z) = D(z)·¶Cz,

 

where D(z) is the diffusion coefficient [Zhuang et al., 2004]; and the modified Michaelis-Menten equation for calculating methane oxidation is:Roxid(t,z) = -Vmax·(CTh)/(KM + C - CTh), where CTh (mg·m-3) is the threshold concentration [Panikov, 1995, p. 151]; Vmax (mg·m-3·h-1) is the maximum specific consumption rate; KM (mg·m-3) is the half–saturation constant, and also under assumptions, (i) the concentration of CH4 is approximately equal to atmospheric (CA = 1.29 mg/m3) at the upper boundary (soil/atmosphere); (ii) the flux of CH4 can be assumed to be zero at an infinitely great depth [Born et al., 1990]; (iii) D, Vmax and KM >> (C- CTh) do not change with depth. Therefore, the absolute value of the specific flux from the atmosphere to the soil is:

 

|F(0)| = (CA-CTh)·(Vmax·D/KM)½.

 

The maximum value of the diffusion coefficient can be estimated by the Penman equation: D = D o·Pa·0.66, where Do is the diffusion coefficient in air; Pa is the porosity of aeration [Смагин, 2005, p. 165]. Since we are going to estimate the maximum value of diffusion, we will take the limit value of porosity, which is 1, but as far as the proportion of pores of stable aeration accounts for half of the total pore volume [Растворова, 1983, p. 52], then for further calculations we will take Pa = 0.5, hence D = D o·0.33. According to [Arah and Stephen, 1998], for CH4

 

Do = 1.9·10-5∙(T/273)1.82 m2/s = 6.8·10-2∙(T/273)1.82 m2/h,

 

where T is temperature (K). When solving our diffusion problem, we assumed that the temperature is the same throughout the soil profile, and is 293 K. then D = 6.8·10-2∙(293/273)1.82·0.33 = 2.55·10-2 m2/h.

The maximum rate of CH4 oxidation by soil was experimentally estimated in [Bender and Conrad, 1992] and was 57.3 mg/(h·m3), which is in good agreement with the value of Vmax = 47 mg/(h·m3) obtained at T = 32 °C according to the temperature dependence for automorphic soils of boreal forests Vmax = 1.5(T ‑5.4)/10 mmol/(h·L), given in the work of Zhuang et al. [2004].

The half–saturation constant is the concentration of the substrate, at which the specific growth rate of microorganisms takes a value equal to a half of the maximum.  Summaries of the values KM have been repeatedly published (see, for example, [King, 1992, Tab. II; Segers, 1998, Tab. 4; Глаголев, 2006, pp. 324-325]). For our purposes, we should take the KM obtained directly in the experiments with substrate concentrations (CH4) closest to those found in natural conditions. The minimum value (3·10-8 mol/L) is given in [Bender and Conrad, 1992]. This value corresponds to the methane concentration in the air of about 20 ppm (14.3 mg/m3). This КМ value will be taken for further calculations.

The threshold concentration of CH4 for methanotrophs in the upper soil layer, given in the scientific literature, varies from 0.1 to 3.5 ppm [Crill, 1991; Bender and Conrad, 1992; Kravchenko et al., 2010]. Since we are interested in the minimum value of this indicator, we will bring it to the minimum temperature (273 K or 0 °C): CTh = 0.0714 mg/m3.

Now, having all the necessary numerical values, we can estimate the maximum intensity of methane consumption by natural soils:

|F(0)| = 1.2186·(57.3·2.55·10-2/14.3)½ ≈ 0.39 mg/(m2·h).

 

Thus, for a certain "ideal" soil (evenly warmed throughout the profile, perfectly aerated, and at the same time containing enough moisture to create optimal living conditions for methanotrophs, which, by the way, are extremely numerous in the soil, and their methane half–saturation constant is very low, etc.) we obtained an absorption intensity of CH4 of about 0.39 mg/(m2·h). Since the combination of optimal values of all factors affecting methane consumption is very unlikely (or, rather, even improbable) in real soils, the resulting value can be considered extremely possible. And in view of this, the empirical generalization made in [Crill, 1991] becomes clear: "From the Amazon floodplain to the Arctic, the most rapid rates rarely exceed 6 mgCH4·m-2·d-1" i.e. 0.25 mg/(m2·h).

Conclusion. So, we considered the absorption of methane as a biochemical process (following the Michaelis-Menten law with certain kinetic parameters), limited by diffusion in porous medium (soil). Based on this theoretical analysis, we came to the conclusion that the extremely large values of the specific absorption flux of CH4 (about 0.4 mg·m-2·h-1 and more), which are sometimes found in the literature, are unrealistic, if we are talking about the soils, which are always under methane concentrations no greater than atmospheric – 1.8 ppmv. This applies to the vast majority of soils – almost all, except for wetlands and soils covering landfills, underground gas storage facilities or other powerful sources of methane.

About the authors

M. V. Glagolev

Lomonosov Moscow State University, Moscow, Russia;
Institute of Forest Science, Russian Academy of Sciences, Uspenskoe (Moscow region), Russia;
Yugra State University, Khanty-Mansyisk, Russia

Email: m_glagolev@mail.ru

G. G. Suvorov

A.N.Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences,Moscow, Russia

Author for correspondence.
Email: m_glagolev@mail.ru

D. V. Il’yasov

Yugra State University, Khanty-Mansyisk, Russia

Email: danila.ilyasov@gmail.com

A. F. Sabrekov

Yugra State University, Khanty-Mansyisk, Russia

Email: misternickel@mail.ru

I. E. Terentieva

University of Calgary, Calgary, Canada

Email: m_glagolev@mail.ru

References

  1. Бронштейн И.Н., Семендяев К.А. 1986. Справочник по математике для инженеров и учащихся втузов. М.: Наука. 544 с. [Bronshtein I.N., Semendyaev K.A. 1986. Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov. M.: Nauka. 544 p. (In Russian)]
  2. Вавилин В.А., Васильев В.Б. 1979. Математическое моделирование процессов биологической очистки сточных вод активным илом. М.: Наука. 119 с. [Vavilin V.A., Vasil'ev V.B. 1979. Matematicheskoe modelirovanie protsessov biologicheskoi ochistki stochnykh vod aktivnym ilom. M.: Nauka. 119 p. (In Russian)]
  3. Вадюнина А.Ф., Корчагина З.А. 1973. Методы исследования физических свойств почв и грунтов. М.: Высшая школа. 399 с. [Vadyunina A.F., Korchagina Z.A. 1973. Metody issledovaniya fizicheskikh svoistv pochv i gruntov. M.: Vysshaya shkola. 399 p. (In Russian)]
  4. Варфоломеев С.Д., Калюжный С.В. 1990. Биотехнология: Кинетические основы микробиологических процессов. М.: Высш. шк. 296 с. [Varfolomeev S.D., Kalyuzhnyi S.V. 1990. Biotekhnologiya: Kineticheskie osnovy mikrobiologicheskikh protsessov. M.: Vyssh. shk. 296 p. (In Russian)]
  5. Воронин А.Д. 1986. Основы физики почв. М.: Изд-во МГУ. 244 с. [Voronin A.D. 1986. Osnovy fiziki pochv. M.: Publishing house MSU. 244 p. (In Russian)]
  6. Глаголев М.В. 2006. Математическое моделирование метанокисления в почве // Труды института микробиологии им. С.Н. Виноградского. М.: Наука. С. 315-341. [Glagolev M.V. 2006. Mathematical modelling of the methane-oxidation in soil // Transactions of Vinogradsky Institute of Microbiology RAS. Moscow: Nauka. P. 315-341. (In Russian)]
  7. Глаголев М.В. 2008. Эмиссия метана: идеология и методология «стандартной модели» для Западной Сибири // Динамика окружающей среды и глобальные изменения климата. № S1. C. 176-190. [Glagolev M.V. 2008. The emission of methane: ideology and methodology of «standard model» for Western Siberia // Environmental Dynamics and Global Climate Change. V. S1. P. 176-190. (In Russian with English Abstract)]
  8. Глаголев М.В. 2010. Эмиссия СН4 болотными почвами Западной Сибири: от почвенного профиля до региона: диссертация на соискание ученой степени кандидата биологических наук / Московский государственный университет им. М.В. Ломоносова (МГУ). Москва. [Glagolev M.V. 2010. Emissiya СН4 bolotnymi pochvami Zapadnoi Sibiri: ot pochvennogo profilya do regiona: dissertation for the degree of candidate of biological sciences / Moscow State University M.V. Lomonosov (MSU). Moskva. (In Russian)]
  9. Глаголев М.В. 2012. Анализ чувствительности модели // Динамика окружающей среды и глобальные изменения климата. Т. 3. № 3. C. 31-53. [Glagolev M.V. 2012. Sensitivity analysis of the model // Environmental Dynamics and Global Climate Change. V. 3. No. 3. P. 31-53. (In Russian)]
  10. Глаголев М.В., Сабреков А.Ф., Казанцев В.С. 2010. Физикохимия и биология торфа. Методы измерения газообмена на границе почва-атмосфера. – Томск: Изд-во ТГПУ. – 104 с.
  11. Казаков Д.А., Вольхин В.В., Нечаев А.И., Торхов Д.В. 2008. Моделирование биодеградации метана // Учен. зап. Казан. ун-та. Сер. Естеств. науки. Т. 150. Кн. 3. С. 91-97. [Kazakov D.A., Volhin V.V., Nechaev A.I., Torhov D.V. 2008. Simulation of Methane Biodegradation // Учен. зап. Казан. ун-та. Сер. Естеств. науки. V. 150. Кн. 3. P. 91-97. [Kazakov D.A., Vol'khin V.V., Nechaev A.I., Torkhov D.V. 2008. Modelirovanie biodegradatsii metana // Uchen. zap. Kazan. un-ta. Ser. Estestv. nauki. T. 150. Kn. 3. S. 91-97. [Kazakov D.A., Volhin V.V., Nechaev A.I., Torhov D.V. 2008. Simulation of Methane Biodegradation // Scientific notes of Kazan University. Series Natural Sciences. V. 150. B. 3. P. 91-97. (In Russian)]
  12. Карпачевский Л.О., Зубкова Т.А. 2007. Почвенное органическое вещество и его влияние на физические свойства почвы // Теории и методы физики почв / Под ред. Е.В. Шеина и Л.О. Карпачевского. М.: «Гриф и К». С. 111-116. [Karpachevskii L.O., Zubkova T.A. 2007. Pochvennoe organicheskoe veshchestvo i ego vliyanie na fizicheskie svoistva pochvy // Teorii i metody fiziki pochv / ed. E.V. Sheina i L.O. Karpachevskogo. M.: «Grif i K». P. 111-116. (In Russian)]
  13. Мышкис А.Д. 1964. Лекции по высшей математике. М.: Наука. 608 с. [Myshkis A.D. 1964. Lektsii po vysshei matematike. M.: Nauka. 608 p. (In Russian)]
  14. Паников Н.С. 1998. Эмиссия парниковых газов из заболоченных почв в атмосферу и проблемы устойчивости // Экология и почвы. Избранные лекции I-VII Всероссийских школ. Том 1. Пущино: ОНТИ ПНЦ РАН. С. 171-184. [Panikov N.S. 1998. Greenhouse effect of gas emission from swampy soils // Ecology and Soils. Selected Lectures I-VII schools (1991-1997). V. I. Pushchino: Institute of Basic Biology Problems. P. 171-184. (In Russian)]
  15. Растворова О.Г. 1983. Физика почв (Практическое руководство). Л.: Изд-во Ленингр. ун-та. 196 с. [Rastvorova O.G. 1983. Fizika pochv (Prakticheskoe rukovodstvo). L.: Publishing house Leningrad University 196 p. (In Russian)]
  16. Романовская В.А., Соколов И.Г., Малашенко Ю.Р. 1985. Сопряжение органотрофного и литотрофного метаболизма у метаниспользующих бактерий // Микробиология. Т. 54. Вып. 1. С. 11-16. [Romanovskaya V.A.. Sokolov I.G., Malashenko Yu.R. 1985. Coupling of organotrophous and lithotrophous metabolism in bacteria assimilating methane // Mikrobiologija. V. 54. No. 1. P. 11-16. (In Russian with English Abstract)]
  17. Смагин А.В. 2005. Газовая фаза почв. М.: Изд-во МГУ. 301 с. [Smagin A.V. 2005. The gaseous phase of soils. Moscow: Moscow St. Univ. Soil Sci. Dept. 301 p. (In Russian)]
  18. Хмеленина В.Н., Ешинимаев Б.Ц., Решетников А.С., Сузина Н.Е., Троценко Ю.А. 2006. Аэробные метанотрофы экстремальных экосистем // Труды Института микробиологии им. С.Н. Виноградского РАН. Вып. XIII: К 100-летию открытия метанотрофии / Под ред. В.Ф. Гальченко. М.: Наука. С. 147-171. [Kmelenina V.N., Esinimaev B.T., Suzina N.E., Reshetnikov A.S., Trotsenko Yu.A. 2006. Aerobic methanotrophs of extreme environments // Proceedings of Winogradsky Institute of Microbiology. Volume XIII: To 100th Anniversary of Methanotrophy / Ed. by V.F. Galchenko. – Moscow: Nauka. – P. 147-171. (In Russian with English Abstract)]
  19. Хромов С.П., Петросянц М.А. 1994. Метеорология и климатология. М.: Изд-во МГУ. 520 с.
  20. Ambus P., Robertson G.P. 2006. The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan // Biogeochemistry. V. 79. P. 315-337.
  21. Arah J.R.M., Stephen K.D. 1998. A model of the processes leading to methane emission from peatland // Atmospheric Environment. V. 32. P. 3257-3264.
  22. Aronson E.L., Vann D.R., Helliker B.R. 2012. Methane flux response to nitrogen amendment in an upland pine forest soil and riparian zone // J. Geophys. Res. V. 117. Article G03012.
  23. Baani M., Liesack W. 2008. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2 // Proc Natl. Acad. Sci. USA. V. 105. № 29. P. 10203-10208.
  24. Bárcena T.G., Yde J.C., Finster K.W. 2010. Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland // Annals of Glaciology. V. 51. P. 23-31.
  25. Bédard C., Knowles R. 1989. Physiology, Biochemistry, and Specific Inhibitors of CH4, NH4+, and CO Oxidation by Methanotrophs and Nitrifiers // Microbiological Reviews. V. 53. No. 1. P. 68-84.
  26. Bender M., Conrad R. 1992. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios // FEMS Microbiology Ecology. V. 101. P. 261-270.
  27. Born M., Dörr H., Levin I. 1990. Methane consumption in aerated soils of the temperate zone // Tellus. V. 42B. P. 2-8.
  28. Christiansen J.R., Vesterdal L., Gundersen P. 2012. Nitrous oxide and methane exchange in two small temperate forest catchments – effects of hydrological gradients and implications for global warming potentials of forest soils // Biogeochemistry. V. 107. P. 437-454.
  29. Crill P.M. 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil // Global Biogeochemical Cycles. V. 5. P. 319-334.
  30. Degelmann D.M., Borken W., Drake H.L., Kolb S. 2010. Different Atmospheric Methane-Oxidizing Communities in European Beech and Norway Spruce Soils // Applied and Environmental Microbiology. V. 76. No. 10. P. 3228-3235.
  31. Dunfield P.F., Tchawa Yimga M., Dedysh S.N., Berger U., Liesack W., Heyer J. 2002. Isolation of a Methylocystis strain containing a novel pmoA-like gene // FEMS Microbiol. Ecol. V. 41. P. 17-26.
  32. Feynman R.P. 1967. The Character of Physical Law. Cambridge: M.I.T.
  33. Freitag T.E., Toet S., Ineson P., Prosser J.I. 2010. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog // FEMS Microbiology Ecology. V. 73. P. 157–165.
  34. Glagolev M.V. 2021. Mathematical modeling in soil biokinetics // Environmental Dynamics and Global Climate Change. V. 12. № 2. P. 123-144.
  35. Glagolev M.V., Kleptsova I.E., Filippov I.V., Kazantsev V.S., Machida T., Maksyutov Sh.Sh. 2010. Methane Emissions from Subtaiga Mires of Western Siberia: The “Standard Model” Bc5 // Moscow University Soil Science Bulletin. Т. 65. № 2. P. 86-93.
  36. Glagolev M.V., Sabrekov A.F., Kleptsova I.E., Filippov I.V., Lapshina E.D., Machida T., Maksyutov Sh.Sh. 2012. Methane Emission from Bogs in the Subtaiga of Western Siberia: The Development of Standard Model // Eurasian Soil Science. V. 45. No. 10. P. 947-957.
  37. Harriss R.C., Sebacher D.I., Day F.P., Jr. 1982. Methane flux in the Great Dismal Swamp // Nature. V. 297. P. 673-674.
  38. Holt J.G. (ed.). 1977. The shorter Bergey’s manual of determinative bacteriology. Baltimore: The Williams and Wilkins Company.
  39. Joergensen L., Degn H. 1983. Mass spectrometric measurements of methane and oxygen utilization by methanotrophic bacteria // FEMS Microbiology Letters. V. 20. P. 331-335.
  40. Khalil M.A.K., Rasmussen R.A., Shearer M.J. 1989. Trends of atmospheric methane during the 1960s and 1970s // Journal of Geophysical Research. V. 94. No. D15. P. 18279-18288.
  41. King G.M. 1992. Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics // Advances in Microbial Ecology. V. 12. P. 431-468.
  42. Kravchenko I.K., Kizilova A.K., Bykova S.A., Men’ko E.V., Gal’chenko V.F. 2010. Molecular Analysis of High-Affinity Methane-Oxidizing Enrichment Cultures Isolated from a Forest Biocenosis and Agrocenoses // Microbiology. V. 79. No. 1. P. 105-113.
  43. Mosier A., Schimel D., Valentine D., Bronson K., Parton W. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands // Nature. V. 350. P. 330-332.
  44. Nisbet E.G., Manning M.R., Dlugokencky E.J., Fisher R.E., Lowry D., Michel S.E., Lund Myhre C., Platt S.M., Allen G., Bousquet P., Brownlow R., Cain M., France1 J.L., Hermansen O., Hossaini R., Jones A.E., Levin I., Manning A.C., Myhre G., Pyle J.A., Vaughn B.H., Warwick N.J., White J.W.C. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement // Global Biogeochemical Cycles. V. 33. https://doi.org/10.1029/2018GB006009
  45. Nozhevnikova A., Glagolev M., Nekrasova V., Einola J., Sormunen K., Rintala J. 2003. The analysis of methods for measurement of methane oxidation in landfills // Water Science and Technology. V. 48. № 4. P. 45-52.
  46. Panikov N.S. 1995. Microbial Growth Kinetics. London: Chapman & Hall.
  47. Raivonen M., Smolander S., Backman L., Susiluoto J., Aalto T., Markkanen T., Mäkelä J., Rinne J., Peltola O., Aurela M., Lohila A., Tomasic M., Li X., Larmola T., Juutinen S., Tuittila E.-S., Heimann M., Sevanto S., Kleinen T., Brovkin V., Vesala T. 2017. HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands // Geosci. Model Dev. V. 10. P. 4665–4691.
  48. Sabrekov A.F., Danilova O.V., Terentieva I.E., Ivanova A.A., Belova S.E., Litti Y.V., Glagolev M.V., Dedysh S.N. 2021. Atmospheric Methane Consumption and Methanotroph Communities inWest Siberian Boreal Upland Forest Ecosystems // Forests. V. 12. No. 12. 1738.
  49. Sabrekov A.F., Glagolev M.V., Alekseychik P.K., Smolentsev B.A., Terentieva I.E., Krivenok L.A., Maksyutov S.S. 2016. A process-based model of methane consumption by upland soils // Environmental Research Letters. V. 11. №7. P. 075001.
  50. Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T. 2011. Methane emission from middle taiga oligotrophic hollows of Western Siberia // Tomsk State Pedagogical University Bulletin. № 5 (107). P. 135-143.
  51. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Terentieva I.E., Stepanenko V.M., Kotsyurbenko O.R., Maksyutov S.S., Pokrovsky O.S. 2017. Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls // Biogeosciences. V. 14. No. 15. P. 3715-3742
  52. Sabrekov A.F., Semenov M.V., Terent’eva I.E., Litti Yu.V., Il’yasov D.V., Glagolev M.V. 2020. The Link between Soil Methane Oxidation Rate and Abundance of Methanotrophs Estimated by Quantitative PCR // Microbiology. V. 89. No. 2. P. 182–191.
  53. Segers R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes // Biogeochemistry. V. 41. P. 23-51.
  54. Sugimoto A., Fujita N. 2006. Hydrogen concentration and stable isotopic composition of methane in bubble gas observed in a natural wetland // Biogeochemistry. V. 81. P. 33-44.
  55. Tveit A.T., Hestnes A.G., Robinson S.L., Schintlmeister A., Dedysh S.N., Jehmlich N., von Bergen M., Herbold C., Wagner M., Richter A., Svenning M.M. 2019. Widespread soil bacterium that oxidizes atmospheric methane // PNAS. V. 116. No. 17. P. 8515-8524.
  56. Tveit A.T., Schmider T., Hestnes A.G., Lindgren M., Didriksen A., Svenning M.M. 2021. Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth // Microorganisms. V. 9. doi: 10.3390/microorganisms9010153
  57. von Schlegel H.G. 1972. Allgemeine mikrobiologie. Georg Thieme Verlag Stuttgart.
  58. Walter B.P., Heimann M., Shannon R.D., White J.R. 1996. A process-based model to derive methane emissions from natural wetlands // Geophysical Research Letters. V. 23. P. 3731-3734.
  59. Whalen S.C., Reeburgh W.S. 1990. Consumption of atmospheric methane by tundra soils // Nature. V. 346. P. 160-162.
  60. Yavitt J.B., Downey D.M., Lang G.E., Sexstone A.J. 1990. Methane consumption in two temperate forest soils // Biogeochemistry. V. 9. P. 39-52.
  61. Yavitt J.B., Lang G.E., Downey D.M. 1988. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian mountains, United States // Global Biogeochemical Cycles. V. 2. P. 253-268.
  62. Yavitt J.B., Simmons J.A., Fahey T.J. 1993. Methane fluxes in a northern hardwood forest ecosystem in relation to acid precipitation // Chemosphere. V. 26. Nos. 1-4. P. 721-730.
  63. Zhuang Q., Melillo J.M., Kicklighter D.W., Prinn R.G., McGuire A.D., Steudler P.A., Felzer B.S., Hu S. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model // Global Biogeochem. Cycles. V. 18. GB3010.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Glagolev M.V., Suvorov G.G., Il’yasov D.V., Sabrekov A.F., Terentieva I.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies