Population demography of rare sedges (Eriophorum gracile and Carex livida) north of the Arctic Circle in Murmansk Region and climate change impacts

Cover Page

Cite item

Full Text

Abstract

Species of Cyperaceae are little studied on the population level globally. Also in Murmansk Region, species from this family were not included in long-term population studies of rare plant species whereas other representatives from 21 families were put in [Blinova, 2009].  Experimental works with sedges is often neglected because of taxonomic difficulties and a lack of methods for study populations of this group [Kitamura et al., 2016; Sosnovska, Danylyk, 2017]. Such difficulties became obvious while the IUCN-red data book testing.  Of rare sedges studied in this paper Eriophorum gracile is included in the regional Red data book [Kozhin, 2014] and Carex livida is in the Appendix of this book in the group “Need of monitoring”.

 

The Murmansk Region (66–70° N), located in the north-eastern corner of Russian Fennoscandia, is a part of the Atlantic-Arctic zone of temperate belt with a rather mild climate. The region is very heterogeneous. Two latitudinal vegetation zones can be distinguished: tundra and taiga. So, many boreal plant species reach here their northern limit of distribution. Our field work has been conducted in the center part of the region in a recently found rich fen [Blinova, Petrovskij, 2014]. Both study species (Eriophorum gracile и Carex livida) have circumpolar distribution in wetlands of northern hemisphere [Hulten, Fries, 1986], and they are at the northern range in Murmansk Region [Kuzeneva, 1954; Chernov, 1954]. They are polycarpic perennials. An annual shoot has been selected as a counting unit (Fig. 1). In E. gracile only the number of generative shoots has been counted in the field. For non-destructive purposes, from herbarium data, the ratio between generative and vegetative shoots was defined as 1:1. The total population size for this species has been estimated from this ratio. In population of C. livida, the direct counting in the field has been done on 3-5 small plots (0.25*0.25 м2). Lately this value has been recalculated according to the area of population subset. Clusters and subsets have been distinguished in population structure according to suggested aggregation patterns of spatial structure in local plant populations [Blinova, 2018]. Marked population subsets have been monitored several times in the growing period in 2014-2016 years. In the field the boundaries and areas of rich fen and populations (including subsets) have been estimated with the help of GPS navigation device Garmin Dakota 20, in the lab all data are further processed using Garmin Software BaseCamp 4.2.5. Nomenclature for vascular plants is given according to S. K. Czerepanov [1995], for mosses after M. S. Ignatov & O. M. Afonina [1992].

 

Our results show that extremely low (0.2% for Eriophorum gracile) and relatively low (3.1% для Carex livida) population cover is characteristic for a large long-term monitored fen. Spatial aggregation of E. gracile population is structured on very small area (40 м2) whereas C. livida is established on relatively representative area (633 м2). E. gracile develops small population subsets (8 m2 on average) at a distance to next about 70 m in different parts of rich fen. Each such subset contains 9-10 mature individuals on average. C. livida has larger subsets (211 m2 on average) at 30 m away from the neighbor. The size of each subset makes c. 2500 generative shoots. The spatial population pattern of E. gracile shows isolated subsets with single clusters, whereas of C. livida represents isolated subsets with merged clusters. High fluctuations of population size and its subsets are revealed in E. gracile from year to year. The number of generative shoots and air temperature in the growing season (June-September) of the current year establish negative relationship.

 

This study in one of the northernmost populations of Eriophorum gracile confirms other data from different parts of its distribution area that populations of this species are very fragmented and show high fluctuations in the number of generative shoots [Barr 1996; Käsermann, Moser, 1999; Dickenmann, Keel, 2004; Decker et al., 2006; Chatters, Sanderson, 2014]. An analysis of spatial structure of populations has been pointed out that anemochory of E. gracile could be a bottleneck for the population fitness in rich fens conditions, whereas baro- and hydrochory of C. livida promotes further seed germination and survival. Additionally, current climate-changed impacts could cause an extirpation of E. gracile from floristic composition of rich fens, whereas such a threat is minimal for C. livida. Both species need regional protection of their populations. An introduction into culture is essential for further ontogenetic studies and trigger examination of clonal division of labor.

About the authors

Ilona Vladimirovna Blinova

Полярно-альпийский ботанический сад-институт
184200 Мурманская обл., Апатиты, ул. Ферсмана 18а

Author for correspondence.
Email: ilbli@yahoo.com
Russian Federation

References

  1. Алексеев Ю.Е. 1996. Осоки (морфология, биология, онтогенез, эволюция). М. Ч. 1. 134 с. [Alexeev Yu.E. 1996. Osoki (morfologiya, biologiya, ontogenez, evolutsiya. (in Russian)]
  2. Блинова И.В. 2003. Материалы к биологии Hammarbya paludosa (L.) O. Kuntze (Orchidaceae) в Мурманской области (Россия) // Бюл. МОИП. Отдел биол. Т. 108(6). С. 47–51. [Blinova I.V. 2003. Materialy k biologii Hammarbya paludosa (L.) O. Kuntze (Orchidaceae) v Murmanskoi oblasti (Rossiya) // Bull. Moskovskogo Obscestva ispytetelei prirody. Otdel biologicheskii. V. 108(6). P. 47–51. (in Russian)]
  3. Блинова И.В. 2009. Популяционные исследования редких видов сосудистых растений в Мурманской области // Разнообразие растений, лишайников и цианопрокариот Мурманской области: итоги изучения и перспективы охраны / Под ред. Н.А. Константиновой. СПб. С. 90–100. [Blinova I. V. 2009. Populyazionnye issledovaniya redkikh vidov sosudistykh rastenii v Murmanskoj oblasti // Raznoobrazie rastenij, lishainikov i zianoprokariot Murmanskoi oblasti: itogi izucheniya i perspektivy okhrany / ed. by N.A. Konstantinova. SPb. P. 90–100. (in Russian)]
  4. Блинова И.В. 2016. О сопряженности пространственного размещения популяций редких видов орхидных и осоковых с кислотностью и электропроводностью почв на минеротрофном и насыщенном основаниями болоте в Мурманской области (Россия) // Вестник КНЦ РАН. Т. 4 (27). C. 109–121. [Blinova I.V. 2016. O sopryazhennosti prostranstvennogo rasmesceniya populyazii redkikh vidov orkhidnykh i osokovykh s kislotnostiyu i elektroprovodnostiju pochv na minerotrofnom i nasycsennom osnovaniyami bolote v Murmanskoj oblasti // Herald of the Kola Science Centre of the Russian Academy of Sciences. V. 4(27). P. 109–121. (in Russian)]
  5. Блинова И.В. 2018. Редкие виды орхидных и осоковых богатых минеротрофных болот: пространственная и онтогенетическая структура популяций, фитоценотическое окружение и охрана. Болота северо-восточной Фенноскандии. Рига: Lambert Academic Publishing. 127 с. [Blinova I.V. 2018. Redkie vidy orkhidnykh i osokovykh bogatykh minerotrofnykh bolot: prostranstvennaya i ontogeneticheskaya struktura populatsii, fitotsenoticheskoe okruzhenie i okhrana. Riga: Lambert Academic Publishing. 127 p. (in Russian)].
  6. Блинова И.В., Петровский М.Н. 2014. К характеристике минеротрофных травяных болот в центральной части Мурманской области и о необходимости их охраны // Вестник КНЦ РАН. Т. 18(3). С. 38–55. [Blinova I.V., Petrovskii M.N. 2014. K kharakteristike minerotrofnykh travyanykh bolot v zentral’noi chasti Murmanskoj oblasti i o neobkhodimosti ikh okhrany// Herald of the Kola Science Centre of the Russian Academy of Sciences. V. 18(3). P. 38–55. (in Russian)]
  7. Демин В.И. 2022. Создание однородного ряда среднемесячных температур воздуха в Апатитах (Мурманская область) для изучения климатических изменений // Physics of Auroral Phenomena, Proceedings of XLV Annual Seminar / Ed. by A.A. Lubchich. Apatity. P. 144–148. [Demin V.I. 2022. Sozdanie odnorodnogo ryada srednemesyachnykh temperatur vozdukha v Apatitakh (Murmanskaya oblast’) dlya izucheniya klimaticheskikh izmenenii // Physics of Auroral Phenomena, Proceedings of XLV Annual Seminar / Ed. by A.A. Lubchich. Apatity. P. 144–148. (in Russian)]
  8. Игнатов М.С., Афонина О.М. 1992. Список мхов территории бывшего СССР // Arctoa. Т. 1. С. 1–87. [Ignatov M. S., Afonina O. M. 1992. Spisok mkhov territorii byvshego SSSR // Arctoa. V. 1. P. 1–87. (in Russian)]
  9. Кириллова Н.Р. 2019. Современное состояние коллекции аборигенной флоры Мурманской области в Полярно-альпийском ботаническом саде-институте им. Н.А. Аврорина // Вестник Кольского научного центра РАН. Т. 1 (11). С. 30–41. [Kirillova N.R. 2019. Sovremennoe sostoyanie kollektsii aborigennoi flory Murmanskoi oblasti v Polyarno-alpiiskom botanicheskon sadu-institute imeni N.A. Avrorina // Herald of the Kola Science Centre of the Russian Academy of Sciences. V. 1 (11). P. 30–41. (in Russian)]
  10. Красная книга Мурманской обл. 2014 / Под ред. Н.А. Константиновой, А.С. Корякина, О.А. Макаровой и В.В. Бианки. Изд. 2-е Сосудистые растения. Кемерово: «Азия-принт». 684 c. [Krasnaya kniga Murmanskoi oblasti. 2014 / Ed. by N.A. Konstantinova, A.C.Koryakin, O.A.Makarova, V.V. Bianki. Izd. 2. Sosudistye rastenia. Kemerovo: “Asia-Print”. 584 p. (in Russian)]
  11. Красная книга РСФСР. 1988. Растения / Под ред. В.Д. Голованова и др. Москва. 605 c. [Krasnaya kniga RSFSR. 1988. Rastenia / Ed. by V.D. Golovanov etc. Moscow. 605 p. (in Russian)]
  12. Кузенева О.И. 1954. Carex livida / Флора Мурманской области. Т. 2. Москва-Ленинград. С. 120–121. [Kuzeneva O.I. 1954. Carex livida / Flora Murmanskoi oblasti, V. 2. Moskva-Leningrad. P. 120–121.(in Russian)]
  13. Ландышева А.С. 2009. Краткие итоги интродукции высших водных растений в Главном ботаническом саду им. Н. В. Цицина РАН // Вестник КрасГАУ. Т. 9. С. 44–51. [Landysheva A.S. 2009. Kratkie itogi introduktsii vysshikh vodnykh rastenii v Glavnom botanicheskon sadu imeni N.V. Tsitsina RAS // Vestnik Krasnoyarskogo Gosudarstvennogo Agrarnogo Universiteta. V. 9. P. 44–51. (in Russian)]
  14. Филатова И.О. 2004. Биоморфология и онтогенез дерновинных видов рода Carex L.: автореф. дис. … канд. биол. наук. Москва: МГУ. 26 с. [Filatova I.O. 2004. Biomorfologiya i ontogenez dernovinnykh vidov roda Carex L.: avtoreferat dis …Ph.D. Moskva: MGU. 26 p. (in Russian)]
  15. Черепанов С.К. 1995. Сосудистые растения России и сопредельных государств. СПб. 992 с. [Czerepanov S.K. 1995. Sosudistye rastenia Rossii i sopredelnykh gosudarstv. SPb. 992 p. (in Russian)]
  16. Чернов Е.Г. 1954. Eriophorum gracile / Флора Мурманской области. Т. 2. Москва-Ленинград. С. 16–18. [Chernov E.G. 1954. Eriophorum gracile / Flora Murmanskoi oblasti, V. 2. Moskva-Leningrad. P. 16–18. (in Russian)]
  17. Яковлев Б.А. 1961. Климат Мурманской области. Мурманск. 180 с. [Yakovlev B.A. 1961. Klimat Murmanskoi oblasti. Murmansk. 180 p. (in Russian)]
  18. Aalto J.A., Pirinen P., Jylhä K. 2016. New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate // Journal of Geophysical Research: Atmospheres. V. 121(8). P. 3807–3823. https://doi.org/10.1002/2015JD024651
  19. Anleitung zur Kultivierung seltener Pflanzenarten: Art Eriophorum gracile, Zierliches Wollgras. 2019 // Fachstelle Naturschutz Kt. Zürich & Topos. https://www.infoflora.ch/assets/content/documents/conservation/Fachstelle_Naturschutz_Kt_Zuerich_and_topos_2019_Anleitung_zur_Kultivierung_Eriophorum_gracile.pdf (the data of access: 10.02.2023)
  20. Barr C. 1996. Population Study of Eriophorum gracile Koch (Cyperaceae) at its Southern Range Limit in Pennsylvania // Bartonia. V. 59. P. 87–93.
  21. Beier C., Beierkuhnlein C.,Wohlgemuth Th., Penuelas J., Emmett B., Körner Ch., De Boeck H. Christensen J., Leuzinger S., Janssens I., Hansen K. 2012. Precipitation manipulation experiments–challenges and recommendations for the future // Ecology letters. V. 15. P. 899–911.
  22. Bilz M., Kell S.P., Maxted N., Lansdown R.V. 2011. European Red List of Vascular Plants. Luxembourg: Publications Office of the European Union. 144 p.
  23. Blinova I.V. 2016. Spatial population structure of rare orchid species in rich fens in central part of Murmansk Region // Russian Journal of Ecology. V. 47(3). P. 234–240. (in Russian and English).
  24. Blinova I., Uotila P. 2012. Dactylorhiza traunsteineri (Orchidaceae) in Murmansk Region (Russia) // Memoranda Soc. Fauna Flora Fennica. V. 88. P. 67–79.
  25. Brooker R.W., Carlsson B.Å., Callaghan T.V. 2001. Carex bigelowii Torrey ex Schweinitz (C. rigida Good., Non Schrank; C. hyperborea Drejer) // Journal of Ecology. V. 89(6). P. 1072–1095.
  26. Charpentier A., Stuefer J. 1999. Functional specialization of ramets in Scirpus maritimus: Splitting the tasks of sexual reproduction, vegetative growth, and resource storage // Plant Ecology. V. 141. P. 129–136.
  27. Chatters C., Sanderson N.A. 2014. Slender Cottongrass Eriophorum gracile in the New Forest. Curdridge, Hampshire, UK. 106 p.
  28. Conaghan J.P., Sheehy Skeffington M. 2009. The distribution and conservation of Eriophorum gracile Koch ex Roth (Cyperaceae), Slender Cotton-grass, in Ireland // Watsonia. V. 27. P. 229–238.
  29. Decker K., Culver D.R., Anderson D.G. 2006. Eriophorum gracile W. D. J. Koch (slender cottongrass): a technical conservation assessment. Colorado: USDA Forest Service. 42 p. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5206985.pdf
  30. Dickenmann R., Keel A. 2004. Aktionsplan Schlankes Wollgras (Eriophorum gracile Roth) // AP ZH 1-05. Zürich. 23 p. URL. https://www.zh.ch/content/dam/zhweb/bilder-dokumente/themen/umwelt-tiere/naturschutz/artenschutz/aktionsplaene-flora/bluetenpflanzen/eriophorum_gracile_ap.pdf (the data of access: 25.02.2022)
  31. Gage E., Cooper D.J. 2006. Carex livida (Wahlenberg) Willdenow (livid sedge): a technical conservation assessment. Colorado: USDA Forest Service, 45 p. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5206978.pdf
  32. Guyonneau J. 2006. Répartition, état de conservation et écologie de la Linaigrette grêle (Eriophorum gracile) dans les tourbières de la chaîne du Jura français // Les Nouvelles Archives de la Flore Jurassienne, n°4. P. 53–64.
  33. Hájek M., Horsák M., Tichý L., Hájková P., Dítě D., Jamrichová E. 2011. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach // Journal of Biogeography. V. 38. P. 742–755.
  34. Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis // Palaeontologia Electronica. V. 4(1). 9 p. https://palaeo-electronica.org/2001_1/past/issue1_01.htm
  35. Hulten E., Fries M. 1986. Atlas of North European vascular plants: north of the Tropic of Cancer. Vol. I-III. Königstein: Koeltz Scientific Books.
  36. Karlsen S., Høgda K., Wielgolaski F., Tolvanen A., Tømmervik H., Poikolainen J., Kubin E. 2009. Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data // Climate Research. V. 39. P. 275–286. https://doi.org/10.3354/cr00828
  37. Kivinen S., Rasmus S., Jylhä K., Laapas M. 2017. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013) // Climate. V. 5 (1). 16 pp. https://doi.org/10.3390/cli5010016
  38. Kitamura K., Kakishima S., Uehara T., Morita S., Tainaka K.-i., Yoshimura J. 2016. The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae) // PLoS ONE. V. 11(6). P. e0157773. https://doi.org/10.1371/journal.pone.0157773
  39. Kreplin H.N., Ferreira C.S.S., Destouni G., Keesstra S.D., Salvati L., Kalantari Z. 2021. Arctic wetland system dynamics under climate warming. Water. V. 8(4). 16 pp. https://doi.org/10.1002/wat2.1526
  40. Käsermann C., Moser D.M. 1999. Merkblätter Artenschutz – Blütenpflanzen und Farne. Stand. 344 p.
  41. Mäkiranta P., Laiho R., Mehtätalo L., Straková P., Sormunen J., Minkkinen K., Penttilä T., Fritze H., Tuittila E-S. 2018. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes // Global Change Biology. V. 24(3). P. 944–956. https://doi.org/10.1111/gcb.13934
  42. Mark A. F., Fetcher N., Shaver G. R., Chapin III F. S. 1985. Estimated Ages of Mature Tussocks of Eriophorum vaginatum along a Latitudinal Gradient in Central Alaska, U.S.A. // Arctic and Alpine Research. V. 17(1). P. 1–5.
  43. Mark A.F., Chapin F.S. 1989. Seasonal control over allocation to reproduction in a tussock-forming and a rhizomatous species of Eriophorum in central Alaska // Oecologia. V. 8. P. 27–34. https://doi.org/10.1007/BF00377194
  44. Marshall G.J., Kivinen S., Jylha K., Vignols R.M., Rees W.G. 2018. The accuracy of climate variability and trends across Arctic Fennoscandia in four reanalyses // Int. J. Climatol. V. 38. P. 3878–3895. https://doi.org/10.1002/joc.5541
  45. Rantanen M., Karpechko A.Y., Lipponen A. et al. 2022. The Arctic has warmed nearly four times faster than the globe since 1979 // Communications Earth & Environment. V. 3. Article number 168. P. 1–10. https://doi.org/10.1038/s43247-022-00498-3
  46. Red Data Book of East Fennoscandia / Kotiranta H., Uotila P., Sulkava S., Peltonen S.-L. (eds.). 1998. Helsinki. 351 p.
  47. Salimi Sh., Almuktar S., Scholz M. 2021. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands // Journal of Environmental Management. V. 286. N. 112160. https://doi.org/10.1016/j.jenvman.2021.112160
  48. Sosnovska S., Danylyk I. 2017. Population structure of Carex dioica L. (Cyperaceae) in Ukraine under different growth conditions // Biodiversity: Research and Conservation. Vol. 46. P. 19–33.
  49. Sporbert M., Jakubka D., Bucher S.F., Hensen I., Freiberg M., Heubach K., König A., Nordt B., Plos C., Blinova I., Bonn A., Knickmann B., Koubek T., Linstädter A., Mašková T., Primack R.B., Rosche C., Shah M.A., Stevens A.-D., Tielbörger K., Träger S., Wirth C., Römermann C. 2022. Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study // New Phytol. V. 235(6). P. 2199–2210.
  50. Tolvanen A., Henry G. 2000. Population structure of three dominant sedges under muskox herbivory in the high Arctic // Arctic, Antarctic, and Alpine Research. V. 32. P. 449–455.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Blinova I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies