The carbon dioxide fluxes at the open-top chambers experiment on the ombrotrophic bog (Mukhrino field station)

Cover Page

Cite item

Full Text

Abstract

The continuous measurement of CO2 fluxes at the open-top chamber experiment in the ombrotrophic peatland (located in the middle taiga zone, West Siberia, Russia) has been provided  during the warm season of 2022 (beginning of June to beginning of October).  The Reco, NEE and GPP were calculated for this period; abiotic factors related to CO2 emissions, such as PAR, air temperature, water table level and precipitation, were also measured. The monthly average values showed a negative NEE of -9.89 C g m-2 month-1 in July, a negative GPP of -34.19 C g m-2 month-1 in July, and a positive values Reco of 41.68 C g m-2 month-1 in August. In 2022, the studied peatland hollows were only a carbon stock in July, while in the remaining months they were a source of CO2, which could be caused by small precipitation amount.

The monthly average diurnal variations of CO2 fluxes showed similar behaviour for both the OTC plot and control plot fluxes, which may be explained by the similarity in vegetation cover.

About the authors

E. A. Zarov

Yugra State University, Khanty-Mansiysk, Russian Federation

Author for correspondence.
Email: zarov.evgen@yandex.ru
Russian Federation

A. Jacotot

Laboratoire ECOBIO, Physicien adjoint, Observatoire des Sciences de l’Univers de Rennes, Rennes, France

Email: zarov.evgen@yandex.ru

A. A. Kulik

Yugra State University, Khanty-Mansiysk, Russian Federation

Email: zarov.evgen@yandex.ru

S. S. Gogo

Laboratoire ECOBIO, Physicien adjoint, Observatoire des Sciences de l’Univers de Rennes, Rennes, France

Email: zarov.evgen@yandex.ru

E. D. Lapshina

Yugra State University, Khanty-Mansiysk, Russian Federation

Email: e_lapshina@ugrasu.ru

E. A. Dyukarev

Yugra State University, Khanty-Mansiysk, Russian Federation;
Institute of Monitoring of Climatic and Ecological Systems, SB RAS, Tomsk, Russian Federation

Email: egor@imces.ru

References

  1. Aronson E.L., McNulty S.G. 2009. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. // Agricultural and Forest Meteorology. V. 149. N. 11. P. 1791-1799. https://doi.org/10.1016/j.agrformet.2009.06.007
  2. Bahram M., Hildebrand F., Forslund S.K., Anderson J.L., Soudzilovskaia N.A., Bodegom P.M., Bengtsson-Palme J., Anslan S., Coelho L.P., Harend H., Huerta-Cepas J., Medema M.H., Maltz M.R., Mundra S., Olsson P.A., Pent M., Põlme S., Sunagawa S., Ryberg M., Tedersoo L., Bork P. 2018. Structure and function of the global topsoil microbiome. // Nature. V. 560., N. 7717., P. 233-237. https://doi.org/10.1038/s41586-018-0386-6
  3. Bligh E.G., Dyer W.J. 1959. A Rapid Method of Total Lipid Extraction and Purification. // Canadian journal of biochemistry and physiology. V. 37., N. 8., P. 911–917. https://doi.org/10.1139/o59-099
  4. Cook J., Oreskes N., Doran P.T., Anderegg W.R.L., Verheggen B., Maibach E.W., Carlton J.S., Lewandowsky S., Skuce A.G., Green S.A., Nuccitelli D., Jacobs P., Richardson M., Winkler B., Painting R., Rice K. 2016. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. // Environmental research letters. V. 11., N. 4. P. 048002. https://doi.org/10.1088/1748-9326/11/4/048002
  5. Crowther T.W., Todd-Brown K.E.O., Rowe C.W., Wieder W.R., Carey J.C., Machmuller M.B., Snoek B.L., Fang S., Zhou G., Allison S.D., Blair J.M., Bridgham S.D., Burton A.J., Carrillo Y., Reich P.B., Clark J.S., Classen A.T., Dijkstra F.A., Elberling B., Emmett B.A., Estiarte M., Frey S.D., Guo J., Harte J., Jiang L., Johnson B.R., Kröel-Dulay G., Larsen K.S., Laudon H., Lavallee J.M., Luo Y., Lupascu M., Ma L.N., Marhan S., Michelsen A., Mohan J., Niu S., Pendall E., Peñuelas J., Pfeifer-Meister L., Poll C., Reinsch S., Reynolds L.L., Schmidt I.K., Sistla S., Sokol N.W., Templer P.H., Treseder K.K., Welker J.M., Bradford M.A. 2016. Quantifying global soil carbon losses in response to warming. // Nature. V. 540., N. 7631., P. 104-108. https://doi.org/10.1038/nature20150
  6. Dyukarev E., Filippova N., Karpov D., Shnyrev N., Zarov E., Filippov I., Voropay N., Avilov V., Artamonov A., Lapshina E. 2021. Hydrometeorological dataset of West Siberian boreal peatland: a 10-year record from the Mukhrino field station // Earth System Science Data. V. 13., N. 6., P. 2595-2605. https://doi.org/10.5194/essd-13-2595-2021.
  7. Golovatskaya E.A., Dyukarev E.A. 2011. Seasonal and diurnal dynamics of CO2 emission from oligotrophic peat soil surface // Russian Meteorology and Hydrology. V. 36., N. 6., P. 413–419
  8. Harenda K.M., Lamentowicz M., Samson M., Chojnicki B.H. 2018. The role of peatlands and their carbon storage function in the context of climate change. // Interdisciplinary approaches for sustainable development goals: Economic growth, social inclusion and environmental protection. P. 169–187.
  9. Henry G.H.R., Hollister R.D., Klanderud K., Björk R.G., Bjorkman F.D., Elphinstone C., Jónsdóttir I.S., Molau U., Petraglia A., Oberbauer S.F., Rixen C., and Wookey P.A. 2022. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. // Arctic Science. V. 8., N. 3., P. 550-571. https://doi.org/10.1139/as-2022-0041
  10. Loisel J., Yu Z., Beilman D.W., Camill P., Alm J., Amesbury M.J., Anderson D., Andersson S., Bochicchio C., Barber K. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. // the Holocene. V. 24., N.9., P. 1028–1042.
  11. Treat C.C., Kleinen T., Broothaerts N., Dalton A.S., Dommain R., Douglas T.A., Drexler J.Z., Finkelstein S.A., Grosse G., Hope G., Hutchings J., Jones M.C., Kuhry P., Lacourse T., Lähteenoja O., Loisel J., Notebaert B., Payne R.J., Peteet D.M., Sannel A.B.K., Stelling J.M., Strauss J., Swindles G.T., Talbot J., Tarnocai C., Verstraeten G., Williams C.J., Xia Z., Yu Z., Väliranta M., Hättestrand M., Alexanderson H., Brovkin V. 2019. Widespread global peatland establishment and persistence over the last 130,000 y. // Proceedings of the National Academy of Sciences. V. 116., N.11., P. 4822–4827. https://doi.org/10.1073/pnas.1813305116
  12. Yu Z.C. 2012. Northern peatland carbon stocks and dynamics: a review. // Biogeosciences. V.9, N.10., P. 4071–4085. https://doi.org/10.5194/bg-9-4071-2012
  13. Zeebe R.E., Ridgwell A., Zachos J.C. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. // Nature Geoscience. V. 9., N. 4., P. 325–329. https://doi.org/10.1038/ngeo2681
  14. Zocatelli R., Li Q., Le Milbeau C., Leroy F., Jacotot A., Laggoun-Défarge F., Guimbaud C., Gogo S. In Prep. Sensibility of microbial communities in peat to environmental conditions revealed by PLFA analysis.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Zarov E.A., Jacoto A., Kulik A.A., Gogo S.S., Lapshina E.D., Dyukarev E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies