Hydrometeorological conditions and water regime of the lake Krasilovskoye (Altai krai) in 2013-2017

Abstract


The paper presents the analysis of the data on monitoring the hydrological state of the basinal freshwater lake Krasilovskoye (Altai Krai) and hydrometeorological conditions in its catchment in 2013-2017. The data from the automated measuring complex developed at the Institute of monitoring of climatic and ecological systems of SB RAS as well as the data on snow surveys carried out by researchers from IWEP SB RAS in the catchment and water area of the lake are used. Observations of water regime in the basin lake in the years with contrasting hydro-climatic conditions made it possible to identify the dominant factor determining its spring filling and to quantify its level dynamics. The magnitude and rate of level rise in spring mainly depend on hydro-climatic conditions of air and soil of the previous cold period, which in turn determine the ratio of surface and underground runoff in spring.

It was found that in the winter of 2014 and 2016, hydro-climatic conditions of the cold period contributed to the freezing of soil and the formation of a "locking" ice layer, which prevented vertical infiltration of melt water. Intensive surface runoff induced a drastic level rise up to 1-1.5 m. In 2015 and 2017, at the absence of soil freezing, the water rise was much lower, despite large snow reserves and intensive snowmelt. In the spring of 2017, the driven out to the water surface diluted near-bottom layer enriched with hydrogen sulfide caused mass fish death after insignificant water inflow to the lake.


Full Text

Introduction

 

In recent decades in Western Siberia a decline of lakes water availability is observed in forest-steppe and steppe zones at Ishim, Barabinsk and Kulundid plains, the decline is involved with climate warming and aridization processes. The analysis of longstanding fluctuations of large lakes level has indicated its entwinement with climate aspects. Whereby, different lake systems react differently to climate changes. [Shitnikov, 1950, 1957; Doganovski, 1978; Adamenko, 1985; Galahov, 2011; MeLanghin and Cohen, 2011; Harlamova, 2013]. Minor basinal lakes are frontier due to the lack of hydrometeorological information.

The basinal lakes hydraulic regime burgeons under a host of factors which determine a moisture entrance on the territories of lakes and water collection. We have used a measuring system АПИК which had been produced at IMCESSBRAS ( institute of monitoring  of climatic and ecological systems of the Siberian Branch of the Russian Academy of sciences, Tomsk) and located on territory of academic training campus “The Lake Krasilovskoye” of Altai State University in 2013 year for solving the water body complex monitoring problems.  

It allows getting information about main meteorological parameters of atmosphere and soil, snow cover height, lacustrine and groundwater level in off line mode. Furthermore annual snow survey data is conducted by researchers from IWEPSBRAS (1Institute of Water and Environmental Problems of the Siberian Branch of the Russian Academy of Sciences) upwards 2015. The monitoring and analysis of hydrometeorological conditions on the water collection of Lake Krasilovskoye and also estimating of its influence over the water level during a snowmelt period were the aim of present work.

 

      The target of research

 

The basinal Lake Krasilovskoye is located on the southeast of West-Siberian plain. The datum level of region is about 220 m, the water collection and the face of lake areas are 46,11 and 0,8 km2  respectively, the length of lake- 2,4 km, the average width- 0,33 km, the average depth- 2,7 m, maximum depth- 6,5 m. The lake has basinal regime, raven upon surface- and groundwater. In the recent decades a sizable lakes fall off occurred: thus in 1978 its maximum depth was 12 m, in 1998- 8m. The existence of terrace deposits betrays in the past Lake Krasilovskoye has had larger sizes.  A tendency of lake evolution is silting and overgrowing. [Lusgin, 1998; Sutorihin et al., 2014; Zuev et al., 2016].

 

      Methods of research and primary materials

 

At a fundamental level were data from measuring system MAAMF(multiparametric automated agro-industrial measuring facility). It takes a measurement in online mode with regular intervals in convenient for researchers range (in our case-15 min) of the following parameters: the intensity of total and the diffuse solar radiation, an atmospheric pressure, the temperature and the relative humidity (at the height of 2-4 m), the amount of liquid precipitations, the snow cover height, the ground temperature (from surface to 3,2 meters), the lake level.

From 2015 researchers from IWEPSBRAS have been conducting an annual snow survey in three routes: at forest, on field and directly on a lakescape for parameters of snow cover analysis. The snow surveys are conducted during the second part of winter before a snowmelt starts, a thickness, the density, the water content in snow are determined. Field surveys and laboratory investigations of observations are conducted within standard requests. [Bykov and Popov, 2011]. Meteorological data of Troitskoye observation station from website “Weather and climate” and database IWEPSBRAS were used for estimating long-time annual average hydro-climatic parameters of this region and for verification of data of monitoring attendance.

 

The main results and discussion

 

Authors have analyzed annual hydrometeorological data from the beginning of October till Match which represent the processes of snow accumulation, snowmelt and connected with two above mentioned spring running water (table 1). A number of retrieved in 2013- 2015 data have been published previously [Zuev et al., 2016].

The behavior of daily-average atmospheric temperatures at the altitude of 2 meters and the ground temperatures at the altitude of 5 and 30 cm according to MAAMF is represented on picture 1.  A dynamic of snow cover height, a summary of liquid precipitations and lake level are represented on picture 2. The height of water level is represented in terms of excess above hydrostatic device till 2015. Subsequently a device reinstallation and its orienteering to Baltic system of elevations were realized in summer 2015; the water level is represented in absolute elevations.

Authors had a capacity to see contrast hydrometeorological conditions during 4 years of investigations. The maximum water upraise which was more than over 1,5 m higher than winter one was seen in spring 2014 (table 1, pic.2,a). Whereby the summary of liquid precipitations, the height of snow cover and the snow reserves were essentially smaller than in the following years when water upraise didn’t rich the altitude of 1 meter. The main factor that determined high lake level in 2014 was wide soil freezing in winter 2013-2014 [Zuev et al., 2016].

Certainly the lower atmospheric temperatures are during a snow cover formation and the lower level of precipitations is the more intensive the process of soil freezing is [Burakov and Ivanova, 2010]. In a present year the quantity of precipitations in October-November was lower than long-time average annual standard over 20 %, a formation of stable snow cover took place in 22nd of December, the strong and longstanding frosts have been seen during the winter and the snow reserves were lower over 1,5 m than long-time average annual ones.  The soil freezing reached the depth of 30 cm in the middle of February (pic.1, a).

 

Subsequently, during sizable thaw period in 20th -23rd  of February 2014 glacial “blockade” layer was formed due to water soaking into the surface layers of freezing soil. An irriguous frozen soil becomes almost impermeable at a temperature of 2-3 subzero degrees. [Popov, 1968]. Thus an intensive accumulated melt-water runoff occurred into the lake during the snowmelt period. During the autumn-winter period 2014-2015 the ground freezing absented (pic.1, b) through tall snow cover and an abundance of precipitations during previous period.  The speed and the height of water rise up in the lake were essentially fewer compared to last year (table 1, pic. 2, б) in the result of intensive melt-water infiltration. In spring 2015 the snowmelt occurred much earlier compared to the average period of snowmelt due to early (8th of April) appearance above-zero daily average temperature and sudden warming. However it hasn’t affected the lake interpenetration: an intensive water rising began after 7 full days later on the snowmelt period.

 

In the beginning of winter 2015 the ground mercury pushed 0 degrees C in the layer depth to 5 cm. The reason of the ground freezing was little amount of precipitations in the autumn 2015 and also the height of snow cover was lower compared to annual average standard. The interchange of frost and thaw periods with exudation of liquid precipitations promoted “blockade” frozen horizon formation and melt-water runoff from the water collector without sizable infiltration wastage.

 

The hydrometeorological conditions differed from long-time annual average standard during 2016-2017. A rainy autumn took priority of winter: in October 2016 the summery of precipitations exceeded the long-time annual average standard in 2 times, that promoted water saturation of water collector and water rising to mark of 214,1 m (for reference in autumn 2015 the water level was 60-70 cm lower (pic. 2, в) and arrived at 213,4- 213,5 m). The snow cover formation occurred in unprecedented short period- in the second ten-day period of October.  Even in below-freezing conditions (-34,5 degrees C) in November the ground temperature continued to be above zero on 5 cm depth (pic.1, г). The tall snow cover and snow reserves prevented ground from freezing during all winter. In these conditions a permanent infiltration of melt-water into the ground existed and land runoff was minimal. Despite tidemarks arrived at 214,4 m in 2016 and 2017 the speed of water rising was slower  and its size was only 40 cm.

 

It was discovered that near bottom layer is enriched by hydrogen sulfide during water sample collection in layer-by-layer subsequence by barometer in freeze-up period. The hydrogen sulfide is one of products of rotting in the silty layer which has a thickness of 50-70 cm and riches 120 cm in some regions according to our examination. In spring 2017 near bottom layer was supplanted to the surface due to temperature overturn in nature’s way. The mass fish mortality has been occurred due to insufficient indraught of melt-water.

Thus primary focus of water rising is on the ground freezing in the water collector.

 

The ground freezing and the formation of glacial “blockade” layer in 2014 znd 2016 promoted the intensive runoff of melt-water and sudden water level rising on the height of 1-1,5 m before the snowmelt period. In years when freezing was absent (2015 and 2017) spring water indraught in lake occurred mostly by groundwater run while the water level rising proceeded after snowmelt period and was less intensive. Over the years of measurement the depth of freezing hasn’t exceeded 30 cm.

 

Conclusion

 

The hydrometeorological parameters of water collector of Lake Krasilovskoye and the spring level regime were analyzed in different years by means of measurement data of system MAAMF and snow surveys.

 

The monitoring of basinal freshwater lake Krasilovskovoye regime in years with fundamentally different hydroclimitic conditions allowed us to reveal the main factors which determine the spring water rising. To the greatest extent the water indraught and the value of level rising depend on the ground condition at the water collector that determines a relation between ground and underground water runoffs during the snowmelt period.

 The monitoring of hydroclimatical parameters of minor basinal lakes basins by means of automatic systems “MAAMF” type gives an opportunity to have more assessment and prediction of its water availability in changing climate conditions.

 

 

Список литературы

Адаменко ВН, 1985. Климат и Озера. Гидрометеоиздат, Ленинград: 264 с. [Adamenko VN, 1985. Klimat i Ozera. Gidrometeoizdat, Leningrad: 264 pp. (In Russian)].

Бураков ДА, Иванова ОИ, 2010. Анализ формирования и прогноз стока весеннего половодья в лесных и лесостепных бассейнах Сибири. Метеорология и гидрология. 6:87–100. [Burakov DA, Ivanova OI, 2010. Analysis of formation and forecast of spring snowmelt flood runoff in forest and forest-steppe basins of Siberian rivers. Russian Meteorology and Hydrology 35:421–431. (In Russian)].

Быков НИ, Попов ЕС, 2010. Наблюдения за динамикой снежного покрова в ООПТ Алтае-Саянского экорегиона. Город, Красноярск: 64 с. [Bykov NI, Popov ES, 2010. Nablyudeniya Za Dinamikoy Snezhnogo Pokrova v OOPT Altae-Sayanskogo Ekoregiona. Gorod, Krasnoyarsk: 64 pp. (In Russian)].

Галахов ВП, 2011. Оценка увлажнения юга Западной Сибири с помощью палеолимнологических реконструкций озера Чаны. Изд-во АлтГУ, Барнаул: 120 с. [Galakhov VP, 2011. Otsenka Uvlazhneniya Yuga Zapadnoy Sibiri s Pomoshch’yu Paleolimnologicheskikh Rekonstruktsiy Ozera Chany. Izd-vo AltGU, Barnaul: 120 pp. (In Russian)].

Догановский АМ, 1978. Закономерности многолетних колебаний уровней оз. Кулундинского, с. 109-112 В: Водные ресурсы Алтайского края, их рациональное использование и охрана, Барнаул. [Doganovskiy AM, 1978. Zakonomernosti mnogoletnikh kolebaniy urovney oz. Kulundinskogo, p. 109–112 In: Vodnye Resursy Altayskogo Kraya, Ikh Ratsional’noe Ispol’zovanie i Okhrana, Barnaul.

Зуев ВВ, Зуева НЕ, Кураков СА, Суторихин ИА, Харламова НФ, 2016. Динамика весеннего подъема уровня бессточных озер (на примере озера Красиловское Алтайского края). География и природные ресурсы. 4:126-134. [Zuev VV, Zueva NE, Kurakov SA, Sutorikhin IA, Kharlamova NF, 2016. Dinamika vesennego pod’ema urovnya besstochnykh ozer (na primere ozera Krasilovskoe Altayskogo kraya). Geography and Natural Resources 4:76–80.] doi: 10.21782/GIPR0206-1619-2016-4(76-80)

Лузгин БН, 1998. Происхождение Красиловского озер. Изв. Алт. Ун-та. Сер. Химия, география, биология. 4:113-116. [Luzgin BN, 1998. The origin of the Krasilovo lake. Izvestiya of Altai State University 4:113–116. (In Russian)].

Погода и климат, http://www.pogodaiklimat.ru/. Дата обращения 20.02.2019. Weather and climate, http://www.PogodaiKlimat.ru. Accessed February 20, 2019.

Попов ЕГ, 1968. Основы гидрологических прогнозов. Гидрометеоиздат, Ленинград: 294с. [Popov EG, 1968. Osnovy Gidrologicheskikh Prognozov. Gidrometeoizdat, Leningrad: 294 pp. (In Russian)].

Суторихин ИА, Букатый ВИ, Харламова НФ, Акулова ОБ, 2014. Сезонные изменения спектральной прозрачности и концентрации хлорофилла в разнотипных озерах. Оптика атмосферы и океана. 27:801-806. [Sutorikhin IA, Bukaty VI, Akulova OB, 2014. Seasonal changes of water spectral transparency and concentration of chlorophyll a in different-type lakes. Atmospheric and Oceanic Optics 27:801–806. (In Russian)].

Харламова НФ, 2013. Оценка и прогноз современных изменений климата Алтайского региона. Изд-во АлтГУ, Барнаул: 156 с. [Kharlamova NF, 2013. Otsenka i Prognoz Sovremennykh Izmeneniy Klimata Altayskogo Regiona. Izd-vo AltGU, Barnaul: 156 pp.

Шнитников АВ, 1950. Внутривековые колебания уровня степных озер Западной Сибири и Северного Казахстана и их зависимость от климата, с. 28-129 В: Труды лаб. озероведения. [Shnitnikov AV, 1950. Vnutrivekovye kolebaniya urovnya stepnykh ozer Zapadnoy Sibiri i Severnogo Kazakhstana i ikh zavisimost’ ot klimata, p. 28–129 In: Trudy Lab. Ozerovedeniya. (In Russian)].

Шнитников АВ, 1957. Изменчивость общей увлажненности материков Северного полушария, с. 264-266 В: Зап. Геогр. о-ва СССР. Нов. серия. М.; Л.: Изд-во АН СССР. [Shnitnikov AV, 1957. Izmenchivost’ obshchey uvlazhnennosti materikov Severnogo polushariya, p. 264–266 In: Zapiski Geograficheskogo Obshchestva SSSR. Novaya Seriya., Moscow-Leningrad: Izd-vo AN SSSR.

MeLanghin DL, Cohen MJ, 2011. Termal artifacts in measurements of finescale  water level varianion. Water Resources 47:W0901.

 

 

Table 1. Hydroneteorological conditions and water level rising in Lake Krasilovskoye in 2013-2014.

 

Indicator

Observations period

 

 

 

01.10.2013-10.05.2014*

01.10.2014-10.05.2015*

01.10.2015-10.05.2016

The date of stable snow cover formation

22nd of December

17th of November

9th of November

The quantity of liquid precipitations during snow cover formation period (October-November), mm

125,4

167,4

81

The average height of snow cover in the start of snow melt period, mm

750

825**

640**

 

 

The water storage in snow cover in the start of snow melt period, mm

~50

249**

187**

The period of intensive snow melt 

12-30th of March

(19 days)

6-14th of April

(9 days)

23.03-08.04

(16 days)

The average atmosphere temperature during the period of intensive snow melt, оС

1,6

4,1

2,7

The quantity of liquid precipitations during the snow melt period, mm

0

41,6

14

The start of spring water rising    

20th of March

20th of April

30th of March

The value of spring water rising, mm

1540

630

1000

Note: * - data from previously  published materials [Zuev et al., 2016];

** - based on snow surveys data

 

 

 

Picture 1 – Tha average daily temperatures of ground : а – in 2013-14, b – in 2014-15 , в – in 2015-16; г – in 2016-17. 1 – The atmosphere temperature at the altitude of 2 m; 2 –the ground temperature at depth of 5 cm; 3 – same but at depth of 30 cm.

Picture 2 –dynamics of snow cover height, the water level in lake and liquid precipitations according to Динамика высоты снежного покрова, уровня воды в озере и жидкие осадки по данным MAAMF database: a – in 2013-14, b– in 2014-15, в – in 2015-16; г – in 2016-17. 1 – liquid precipitations, mm; 2 – thickness of now cover,cm; 3 – water level; 4 – thickness of snow cover (represented according to HC (hydrometeorological centre) Troitskoe due to faulty operation in snow cover sensor MAAMF)

About the authors

Igor Anatolyevich Sutorikhin

Институт водных и экологических проблем Сибирского отделения РАН

Email: sia@iwep.ru
SPIN-code: 2990-6901
Алтайский край, город Барнаул, ул. Молодежная, 1, ИВЭП СО РАН

доктор физико-математических наук, профессор кафедры радиофизики и теоретической физики, институт цифровых технологий, электроники и физики

 

Svetlana Yuryevna Samoylova

Институт водных и экологических проблем Сибирского отделения РАН

Author for correspondence.
Email: bastet@iwep.ru
Алтайский край, город Барнаул, ул. Молодежная, 1, ИВЭП СО РАН

Andrey Alekseevich Kolomeitsev

Институт водных и экологических проблем Сибирского отделения РАН

Email: kolomeycev@iwep.ru
Алтайский край, город Барнаул, ул. Молодежная, 1, ИВЭП СО РАН

Sergey Anatolyevich Kurakov

Институт водных и экологических проблем Сибирского отделения РАН

Email: sergeykurakov@gmail.com
Алтайский край, город Барнаул, ул. Молодежная, 1, ИВЭП СО РАН

References

  1. Адаменко В.Н. 1985. Климат и Озера. Л.: Гидрометеоиздат. 264 с.
  2. Бураков Д.А., Иванова О.И. 2010. Анализ формирования и прогноз стока весеннего половодья в лесных и лесостепных бассейнах Сибири // Метеорология и гидрология. №6. С. 87 – 100.
  3. Быков Н.И., Попов Е.С. 2010. Наблюдения за динамикой снежного покрова в ООПТ Алтае-Саянского экорегиона (методическое руководство).Красноярск.: Город. 64 с.
  4. Галахов В.П. 2011. Оценка увлажнения юга Западной Сибири с помощью палеолимнологических реконструкций озера Чаны. Барнаул: Изд-во АлтГУ. 120 с.
  5. Догановский А.М. 1978. Закономерности многолетних колебаний уровней оз. Кулундинского // В сб.: Водные ресурсы Алтайского края, их рациональное использование и охрана. Барнаул.С. 109 – 112.
  6. Зуев В.В., Зуева Н.Е., Кураков С.А., Суторихин И.А., Харламова Н.Ф. 2016. Динамика весеннего подъема уровня бессточных озер (на примере озера Красиловское Алтайского края) // География и природные ресурсы. №4. С. 126-134.
  7. Лузгин Б.Н. 1998. Происхождение Красиловского озера// Изв. Алт. Ун-та. Сер. Химия, география, биология. С. 113-116.
  8. Погода и Климат.URL: http://www.pogodaiklimat.ru/ (дата обращения: 20.02.2019)
  9. Попов Е.Г. 1968. Основы гидрологических прогнозов. Л.: Гидрометеоиздат. 294с.
  10. Суторихин И.А., Букатый В.И., Харламова Н.Ф., Акулова О.Б. 2014. Сезонные изменения спектральной прозрачности и концентрации хлорофилла а в разнотипных озерах //Оптика атмосферы и океана. Т.27. №9.С. 801-806.
  11. Харламова Н.Ф.2013. Оценка и прогноз современных изменений климата Алтайского региона. Барнаул.: Изд-во АлтГУ. 156 с.
  12. Шнитников А.В. 1950. Внутривековые колебания уровня степных озер Западной Сибири и Северного Казахстана и их зависимость от климата // Тр. лаб. озероведения. Т.1. С. 28-129.
  13. Шнитников А.В. 1957. Изменчивость общей увлажненности материков Северного полушария // Зап. Геогр. о-ва СССР. Нов. серия. М.; Л.: Изд-во АН СССР. Т.16. С. 264-266.
  14. MeLanghin, D.L., Cohen M.J. 2011. Termal artifacts in measurements of finescale water level varianion// Water Resourcer .V. 47. №9. P. W0901.

Supplementary files

Supplementary Files Action
1.
Picture 1 – Tha average daily temperatures of ground : а – in 2013-14, b – in 2014-15 , в – in 2015-16; г – in 2016-17. 1 – The atmosphere temperature at the altitude of 2 m; 2 –the ground temperature at depth of 5 cm; 3 – same but at depth of 30 cm.

Download (1MB) Indexing metadata
2.
Picture 2 –dynamics of snow cover height, the water level in lake and liquid precipitations according to Динамика высоты снежного покрова, уровня воды в озере и жидкие осадки по данным MAAMF database: a – in 2013-14, b– in 2014-15, в – in 2015-16; г – in 2016-17. 1 – liquid precipitations, mm; 2 – thickness of now cover,cm; 3 – water level; 4 – thickness of snow cover (represented according to HC (hydrometeorological centre) Troitskoe due to faulty operation in snow cover sensor MAAMF)

Download (1MB) Indexing metadata

Statistics

Views

Abstract - 88

PDF (Russian) - 8

PDF (English) - 2

Cited-By


PlumX


Copyright (c) 2020 Sutorikhin I.A., Samoylova S.Y., Kolomeitsev A.A., Kurakov S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies