Kinetic isotopic effect: static Rayleigh equation and basic dynamic isotope equation for the substrate in the description of nitrite-dependent anaerobic oxidation of methane

Cover Page

Cite item


The article analyzes the results of modeling the dynamics of nitrite-dependent methane oxidation (N-DAMO) by Methylomirabilis oxyfera microorganisms using the standard isotope dynamic equations. Without specifying a specific function of the rate of the process, the traditional static Rayleigh equation is derived from the basic dynamic isotope equation. Thus, the equation of the 1st order in terms of the substrate is only a special case in the derivation of the Rayleigh equation. It was shown that the dominant fractionation of carbon isotopes occurs in the process of the microbiological reaction of anaerobic oxidation of methane by nitrite, and not in the physical process of mass transfer of dissolved methane into the gas phase. In contrast to the static Rayleigh equation, the dynamic description of the process of fractionation of stable isotopes is important when describing the parallel transformations of the substrate.

About the authors

Vasiliy Aleksandrovich Vavilin

Water problems institute RAS

Author for correspondence.
Russian Federation


  1. Галимов Э.М. 1968. Геохимия стабильных изотопов углерода. М.:Недра. C. 16. [Galimov E.M. 1968. Geokhimiya stabil'nykh izotopov ugleroda. M.:Nedra. P. 16. (In Russian)]
  2. Галимов Э.М. 1973. Изотопы углерода в нефтегазовой геологии. М.: Наука. 384 C. [Galimov E.M. 1968. Geokhimiya stabil'nykh izotopov ugleroda. M.:Nedra. P. 16. (In Russian)]
  3. Bauska T.K., Baggenstos D., Brook E.J., Mix A.C., Marcott S.A., Petrenko V.V., Schaefer H., Severinghaus J.P., Lee J.E. 2016. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation // PNAS. V. 113. P. 3465-3470.
  4. Conrad R., Noll M., Claus P., Klose M., Bastos W.R., Enrich-Prast A. 2011. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments // Biogeosciences.V. 8. P. 795–814.
  5. Craig H. 1957. Isotopic standards for carbon and oxygen and correctio factors for mass-spectrometric analysis of carbon dioxide // Geochim. Cosmochim. Acta. V. 12. P. 133-149.
  6. Deutzmann J.S., Stief P., Brandes J., Schink B. 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake // PNAS. V. 111. P. 18273-18278.
  7. Elsig J., Schmitt J., Leuenberger D., Schneider R., Eyer M., Leuenberger M., Joos F., Fischer H., Stocker T. 2009. Stable isotope constraints on Holocene carbon cycle from an Antarctic ice core // Nature Letter. V. 461 (24 September 2009). P. 507-510..
  8. Etwig K.F., Butler M.K., Le Paslier D.,.Pelletier E., Mangenot S., Kuypers M.M.M.,Schreiber F., DutilhBas E., Zedelius J., de Beer D., Gloerich J., Wessels H.J.C.T., van Alen T/. Luesken F., Wu M.L., van de Pas-Schoonen K.T., Op den Camp H.J.M., Janssen-Megens E.M., Francoijs K/-J., Stunnennenberg H., Weissenbach J., Jetten M.S.M., Strous M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria // Nature V. 464. P.543-548.
  9. Galand P., Yrjälä K., Conrad R. 2010. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems// Biogeosciences. V. 7. P. 3893-3900.
  10. Holler T., Wegener G., Knittel K., Boetius A., Brunner B., Kuypers M.M.M., Widdel F. 2009. Substantial and fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro // Env. Microbiol. Reports. V. 1. P. 370-376.
  11. Hornibrook E.R.C.,Longstaffe F.J., Fyfe W.S. 2000. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments // Geochim.Cosmochim. Acta. V.,64. P. 1013-1027.
  12. Knox M., Quay P.D., Wilbur D. 1992. Kinetic isotopic fractionation during air-water gas transfer of O2, N2, CH4, and H2/ /J. Geophys.Res. V. 97(C12).P. 20335-20343.
  13. Mariotti A., Germon J.C., Hubert P., Kaiser P., Letolle R., Tardieux A. and Tardieux P. 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes // Plant and soil. V. 62. P. 413-430.
  14. Rasigraf O., Vogt C., Richnow H.H., Jetten M.S.M., Ettwig K.F. 2012. Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera // Geochim. Cosmochim. Acta V. 89. P. 256-264.
  15. Rayleigh J.W.C. 1896. Theoretical consideration respecting the separation of gases by diffusion and similar processes // Philos. Mag. V. 42. P. 493-498.
  16. Vavilin V.A., Rytov S.V. 2013. Non-linear dynamics of carbon and hydrogen isotopic signatures based on a biological kinetic model of nitrite-dependent methane oxidation by “Candidatus Methylomirabilis oxyfera” // Ant. Leewenh. V. 104. P. 1097-1108.
  17. Vavilin V.A., Rytov S.V., Lokshina L.Y.. 2014. Non-linear dynamics of nitrogen isotopic signature based on biological kinetic model of uptake and assimilation of ammonium, nitrate and urea by a marine diatom // Ecol. Modell. V. 279. P. 45-53.
  18. Vavilin V.A., Rytov S.V. 2015. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures. // Chemosphere. V. 134. P. 417-426.
  19. Vavilin V, Rytov S, Conrad R. 2017. Modelling methane formation in sediments of tropical lakes focusing on syntrophic acetate oxidation: Dynamic and static carbon isotope equations // Ecol. Modell. V. 363. P. 81–95.

Copyright (c) 2021 Vavilin V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies