Global climate change. Is «Methane bomb» scenario sensitive to melting permafrost of West Siberia peat land?

Cover Page

Cite item

Full Text

Abstract

We consider how to quantify the methane concentration in the atmosphere over the large area of Western Siberia based on hyper-spectral remote sensing data. Is Methane bomb scenario (triggered methane gas emission as it was during Holocene) in evolution of pristine peat land and melting permafrost West Siberia and sub Arctic actual problem of the 21st century? Terrestrial wetland ecosystems were the major source of methane into the atmosphere of Western Siberia during the Holocene. The actual role of pristine peat land in global carbon balance has not been quantified at this time. In particular the sub-arctic peat lands, as extensively present in Western Siberia, are white spaces in knowledge of carbon exchange with the atmosphere. Nevertheless, actual impact of the natural and anthropogenic sources on atmospheric methane over Western Siberia has not been monitored yet. In our research project, the contribution of both natural and anthropogenic emission to atmospheric methane is estimated in Western Siberia. With geographical information technology combined with land unit classification using satellite images and ground measurements, area fluxes of methane are evaluated. Hyper-spectral remote sensing data is used to quantify the methane concentration in the atmosphere over the large area.

Full Text

Глобальные изменения климата: «Метановая бомба» - наукообразный миф или потенциальный сценарий?
×

References

  1. Васин В.В., Агеев А.Л. 1993. Некорректные задачи с априорной информацией. Екатеринбург: УИФ "Наука". 262 с.
  2. Голицын Г.С., Гинзбург А.С. 2007. Оценки возможности "быстрого" метанового потепления 55 млн. лет назад // Доклады РАН. Т. 413. N6. С. 816-819.
  3. Горшков В.Г. 1995. Физические и биологические основы устойчивости жизни. М. 470 С.
  4. Грибанов, К.Г., В.И. Захаров, С.А. Ташкун. 1999. Пакет программ FIRE-ARMS и его применение в задачах пассивного ИК-зондирования атмосферы // Оптика атмосферы и океана. Т. 12. №4. С. 372–378.
  5. Грибанов К.Г., Имасу Р., Топтыгин А.Ю., Блойтен В., Наумов А.В., Захаров В.И. 2007. Метод и результаты по определению метана в атмосфере Западной Сибири из данных сенсора AIRS // Оптика атмосферы и океана. T. 20. №10. C. 881-886.
  6. Жилиба А.И, Кудинов А.Н, Тищенко А.П. 1996. Оценка близости экосистем к состоянию катастрофы // ТвГУ. Ученые записки. Т. 1. С. 25.
  7. Зуев В.Е., Зуев В.В. 1992. Дистанционное оптическое зондирование атмосферы. С-Пб.: Гидрометеоиздат. 275 с.
  8. Мохов И.И., Елисеев А.В., Карпенко А.А. 2006. Чувствительность к антропогенным воздействиям глобальной климатической модели ИФА РАН с интерактивным углеродным циклом // Доклады РАН. T. 407. № 3. C. 400-404.
  9. Тихонов А.Н., Арсенин В.Я. 1986. Методы решения некорректных задач. М.: Наука. 288 с.
  10. Хитрин Л.Н. 1960. Основы горения углеводородных топлив. М: Наука.
  11. Яговкина С.В., Кароль И.Л., Зубов В.А., Лагун В.Е., Решетников А.И., Розанов Е.В. 2003. Оценки потоков метана в атмосферу с территории газовых месторождений севера Западной Сибири с использованием трехмерной модели переноса // Метеорология и гидрология. № 4. С. 49–62.
  12. Baldini J.U., McDermott Frank, J. Fairchild Ian, Structure of the 8200-year cold event revealed by a speleothem trace element record // Science. 2002. № 5576. P. 2203–2206.
  13. Beer R., Glavich T.A., Rider T.M. 2001. Tropospheric emission spectrometer for Earth Observing System's Aura satellite // Applied Optics. V. 40. № 15. P. 2356.
  14. Burrows J.P., Hölzle E., Goede A.P.H., Visser H., Fricke W. 1995. SCIAMACHY- Scanning Imaging Absorption Spectrometer for Atmospheric Chartography // Acta Astronautica. V. 35. No. 7. P. 445.
  15. Chevallier F., Morcrette J.J., Chedin A., Cheruy F. 2000. TIGR-like atmospheric-profile databases for accurate radiative-flux computation // Quart. J. of the Roy. Met. Soc. V. 126. No. 563. P. 777-785. Part B.
  16. Godlevskii A.P., Gordov E.P., Zhiliba A.I., Sharin P.P. 1990. Doppler Lidar with CO2 laser intracavity reception // Atmos. Oceanic Optics. V. 3. P. 34-39.
  17. Gorbachev V.N., Zhiliba A.I. 2000. Transfer formalism for optics problems // Journal of Physics A: Math. General. V. 33. P. 3771-3782.
  18. Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev V.G. 2001. A new software tool for radiative transfer calculations and its application to IMG/ADEOS data // JQSRT. V. 68. № 4. P. 435-451.
  19. Jaquinet-Husson N., Scott N.A., Chedin A., Crepeau L., Armante R., Capelle V., Orphal J., Coustenis A., Boonne C., Poulet-Crovisier N., Barbe A., Birk M., Brown L.R., Camy-Peyret C., Claveau C., Chance K., Christidis N., Clerbaux C., Coheur P.F., Dana V., Daumont L., De Backer-Barilly M.R., Di Lonardo G., Flaud J.M., Goldman A., Hamdouni A., Hess M., Hurley M.D., Jacquemart D., Kleiner I., Kopke P., Mandin J.Y., Massie S., Mikhailenko S., Nemtchinov V., Nikitin A., Newnham D., Perrin A., Perevalov V.I., Pinnock S., Regalia-Jarlot L., Rinsland C.P., Rublev A., Schreier F., Schult L., Smith K.M., Tashkun S.A., Teffo J.L., Toth R.A., Tyuterev Vl.G., Vander Auwera J., Varanasi P., Wagner G. 2008. The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies // Journal of Quantitative Spectroscopy and Radiative Transfer. V. 109. No. 6. P. 1043-1059.
  20. Javelle P. 1994. IASI instrument overview // Procs. of the 5th Workshop on ASSFTS, Nov.30th - Dec.2nd, Tokyo, Japan. P. 1-20.
  21. Jouzel J., Masson-Delmotte V., Cattani O., Dreyfus G., Falourd , Hoffmann G., Minster B., Nouet J., Barnola J.M., Chappellaz J., Fischer H., Gallet J.C., Johnsen S., Leuenberger M., Loulergue L., Luethi D., Oerter H., Parrenin F., Raisbeck G., Raynaud D., Schilt A., Schwander J., Selmo E., Souchez R., Spahni R., Stauffer B., Steffensen J.P., Stenni B., Stocker T.F., Tison J.L., Werner M., Wolff1 E.W. 2007. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years // Science. V. 317. No. 5839. Р. 793-796.
  22. Kondratyev K.Ya., Krapivin V.F., Varotsos C.A. 2003. Global Carbon Cycle and Climate Change. Chichester, United Kingdom: Springer/PRAXIS. Р. 372.
  23. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. V. 399. Р. 429-436.
  24. Parkinson C.L. 2003. Aqua: an Earth-Observing Satellite mission to examine water and other climate variables // Geoscience and Remote Sensing, IEEE Transactions. V. 41. № 2. P. 173-183.
  25. Randall D.A., Wood R.A., Bony S., Colman R., Fichefet T., Fyfe J., Kattsov V., Pitman A., Shukla J., Srinivasan J., Stouffer R.J., Sumi A., Taylor K.E. 2007. Cilmate Models and Their Evaluation // Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (eds.). Cambridge (United Kingdom), New York (NY, USA): Cambridge University Press. Also available at http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch8.html (дата обращения: 22.06.2011).
  26. Rodgers C.D. 2000. Inverse methods for atmospheric sounding. Theory and practice. World Scientific. 206 p.
  27. Rothman L.S., Gordon I.E., Barbe A., Chris Benner D., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.-P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simeckova M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. 2009. The HITRAN 2008 molecular spectroscopic database // JQSRT. V. 110. P. 533-572. doi: 10.1016/j.jqsrt.2009.02.013.
  28. Schmidt G.A., Hoffmann G., Shindell D.T., Hu Y. 2005. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange // J. Geophys. Res. № 110. D21314. doi: 10.1029/2005JD005790.
  29. Smith W.L., Revercomb H., Zhou D.K., Huang H.-L.A. 2005. Hyperspectral sounding: a revolutionary advance in atmospheric remote sensing // SPIE. V. 5655. P. 1-11.
  30. Smith W.L., Woolf H.M. 1976. The Use of Eigenvectors of Statistical Covariance Matrices for Interpreting Satellite Sounding Radiometer Observations // J. Atmospheric Sciences. V. 33. № 7. P. 1127–1140.
  31. Smith W.L., Woolf H.M., Hayden C.M., Wark D.Q., McMillin L.M. 1979. The TIROS-N operational vertical sounder // Bull. Amer. Met. Soc. V. 60. P. 1177–1187.
  32. Smith W.L., Woolf H.M., Revercomb H. 1991. Linear simultaneous solution for temperature and absorbing constituent profiles from radiance spectra // Applied Optics. V. 30. № 9. P. 1117–1123.
  33. Sobrino J.A. 2005. Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission // J. Geophys. Res. V. 110. D16103. doi: 10.1029/2004JD005588.
  34. Toptygin A.Yu., Gribanov K.G., Imasu R., Bleuten W., Zakharov V.I. 2005. Seasonal methane content in atmosphere of the permafrost boundary zone in Western Siberia determined from IMG/ADEOS and AIRS/AQUA data // SPIE. V. 5655. P. 508–514.
  35. Zhiliba A.I. 1991. Limiting sensitivity of absorption spectrometer // Proceedings SPIE. V. 1811: Highly Resolution Molecular Spectroscopy. P. 415-418.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Zhiliba A.I., Vandisheva G.A., Gribanov K.G., Zakharov V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies