Spatial variability of methane emissions from soils of wet forests: a brief review

Обложка

Цитировать

Полный текст

Аннотация

Из-за отсутствия данных о пространственной изменчивости удельных потоков CH4 в почвах под избыточно увлажненными лесами, их роль в глобальной эмиссии метана до сих пор не выяснена. В национальных отчетах стран эти леса относят к "zero-emited ecosystems" (то есть им приписывается нулевая эмиссия СН4,), что неверно отражает их фактические выбросы. В работе дан обзор литературы, содержащей результаты конкретных измерений, а также суммированы методы измерения эмиссии метана из почв лесов. Независимо от географического местоположения переувлажненного леса, удельные потоки метана могут достигать 10 мгCH4∙ч-1∙м-2. И хотя отдельные измерения в тропиках дали десятки мгCH4∙ч-1∙м-2, но совокупность проанализированных экспериментальных результатов показывает, что величина потока определяется не столько температурой, сколько условиями увлажнения. В статье представлен обзор накопленных в настоящее время исследований, посвященных эмиссии метана из избыточно увлажненных лесов.

Об авторах

R A Runkov

МГУ имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: rus_runkov@mail.ru
Россия

D. V. Ilyasov

Югорский государственный университет

Email: d_ilyasov@ugrasu.ru

Список литературы

  1. Bazhin N.M. 2006. The role of methane in the process of global warming of the Earth's atmosphere. Elektronnyi zhurnal energoservisnoi kompanii “Ekologicheskie sistemy”, 1: 49 (in Russian). [Бажин Н. М. 2006. Роль метана в процессе глобального потепления атмосферы Земли // Экологические системы. №. 1. C. 49.] (date of the application 4.03.2023)
  2. URL: http://downloads.igce.ru/publications/Semenov_S_M_etc_2018/Methane_and_climate_Sep_24_2018.pdf.
  3. Berdin V.Kh. 2004. Reference Guide. Greenhouse gases are a global environmental resource. WWF Russia, Moscow, 12 pp. (in Russian). [Бердин В. Х. 2004. Парниковые газы—глобальный экологический ресурс: Справочное пособие. Москва. 12 с.]
  4. Burba G.G., Kurbatova Yu.A., Kuricheva O.A., Avilov V.K., Mamkin V.V. 2016. Turbulent pulsation method. A quick how-to guide. LI-COR Biosciences. A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, (in Russian). [Бурба Г.Г., Курбатова Ю.А., Куричева О.А., Авилов В.К., Мамкин В.В. 2016. Метод турбулентных пульсаций. Краткое практическое руководство // LI-COR Biosciences. М.: Институт проблем экологии и эволюции им. А.Н. Северцова РАН.]
  5. Glagolev M.V. 2010. Inverse modelling method for the determination of the gas flux from the soil. Environmental Dynamics and Global Climate Change, 1(1): 17-36 (in Russian). [Глаголев М.В. 2010. К методу "обратной задачи" для определения поверхностной плотности потока газа из почвы // Динамика окружающей среды и глобальные изменения климата. Т. 1. № 1. С. 17-36.]
  6. Glagolev M.V., Golyshev S.A., Firsov S.Yu. 1999. Assessment of methane transfer from soil to atmosphere by wetland plants. Bolota i zabolochennye lesa v svete zadach ustoichivogo prirodopol'zovaniya. Meeting materials, 177-180 pp. (in Russian). [Глаголев М.В., Голышев С.А., Фирсов С.Ю. 1999. Оценка переноса метана из почвы в атмосферу болотными растениями // Болота и заболоченные леса в свете задач устойчивого природопользования. Материалы совещания. С. 177-180.]
  7. Evgrafova S.Yu., Grodnitskaya I.D., Krinitsyn Yu.O., Syrtsov S.N., Masyagina O.V. 2010. Emission of methane from the soil surface in tundra and forest ecosystems of Siberia. The Bulletin of KrasGAU. 12: 80-86 (in Russian). [Евграфова С.Ю., Гродницкая И.Д., Криницын Ю.О., Сырцов С.Н., Масягина О.В. 2010. Эмиссия метана с поверхности почвы в тундровых и лесных экосистемах Cибири // Вестник КрасГАУ. № 12. С. 80-86.]
  8. Karol' I.L., Kiselev A.A. 2003. Assessment of damage to the "health" of the atmosphere. Priroda, 6: 25-30 (in Russian). [Кароль И.Л., Киселев А.А. 2003. Оценка ущерба "здоровью" атмосферы // Природа. № 6. C. 25-30.]
  9. Sirin A.A., Suvorov G.G., Chistotin M.V., Glagolev M.V. 2012. Values of methane emission from drainage ditches. Environmental Dynamics and Global Climate Change, 3(2): 1-10. (in Russian). [Сирин А.А., Суворов Г.Г., Чистотин М.В., Глаголев М.В. 2012. О значениях эмиссии метана из осушительных каналов // Динамика окружающей среды и глобальные изменения климата. Т. 3. №2. C. 1-10.].
  10. Amaral J. A., Knowles R. 1994. Methane Metabolism in a Temperate Swamp. Applied and Environmental Microbiology, 60(11): 3945-3951.
  11. Ambus P., Christensen S. 1995. Spatial and Seasonal Nitrous Oxide and Methane Fluxes in Danish Forest‐, Grassland‐, and Agroecosystems. Journal of Environmental Quality, 24: 993-1001.
  12. Barber T.R., Burke Jr.R.A., Sackerr W.M. 1988. Diffusive flux of methane from warm wetlands. Global Biogeochemical Cycles, 2(4): 411-425.
  13. Barthel M., Bauters M, Baumgartner S., Drake T.W., Bey N.M., Bush G., Boeckx P., Botefa C.I., Dériaz N., Ekamba G.L., Gallarotti N.,. Mbayu F.M, Mugula J.K., Makelele I.A., Mbongo C.E., Mohn J., Mandea J.Z., Mpambi D.M., Ntaboba L.C., Rukeza M.B., Spencer R.G.M., Summerauer L., Vanlauwe B., Oost K.V., Wolf B., Six J. 2022. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat Commun., 13: Article 330.
  14. Bartlett K.B., Crill P.M., Seebacher D.I., Harriss R.C., Wilson J.O., Melack J.M. 1988. Methane flux from the Central Amazonian floodplain. J. Geophys Res: Atmospheres, 93: 1571-1582.
  15. Burba G. 2005. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. Lincoln: LI-COR® Biosciences.
  16. Crill P.M., Bartlett K.B., Harriss R.C., Gorham E., Verry E.S., Sebacher D.I., Madzar L., Sanner W. 1988. Methane flux from Minnesota peatlands. Global Biogeochemical Cycles, 2(4): 371-384.
  17. Christiansen J.R., Vesterdal L. Gundersen P. 2012. Nitrous oxide and methane exchange in two small temperate forest catchments—effects of hydrological gradients and implications for global warming potentials of forest soils. Biogeochemistry, 107: 437–454
  18. Dannenberg S., Conrad R. 1999. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry, 45: 53–71.
  19. Davydov D.K., Dyachkova A.V., Krasnov O.A., Simonenkov D.V., Fofonov A.V., Maksyutov S.S. 2021. Application of the automated chamber method for longterm measurements CO2 and CH4 fluxes from wetland ecosystems of the West Siberia. Environmental Dynamics and Global Climate Change, 12(1): 5–14.
  20. Devol A.H, Richey J.E., Forsberg B.R., Martinelli L.A. 1990. Seasonal Dynamics in Methane Emissions from the Amazon River Floodplain to the Troposphere. J Geophys Res., 95: 16417-16426.
  21. Dise N. 1993. Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochem Cy., 7: 123-142.
  22. Dlugokencky E., Houweling S. 2003. Methane. Encyclopedia of Atmospheric Sciences. Academic Press, pp. 1286-1294.
  23. Ellis J.L., Kebreab E., Odongo N.E., McBride B.W., Okine E.K., France J. 2007. Prediction of Methane Production from Dairy and Beef Cattle. Am Dairy Science Association, 90: 3456–3467.
  24. Foken T. 2008. Micrometeorology. Springer, 320 pp.
  25. Frey B., Niklaus P.A., Kremer J., Lüscher P., Zimmermann S. 2011. Heavy machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils. Applied and Environmental Microbiology, 77: 6060-6068.
  26. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. 2013. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO).
  27. Glagolev M.V., Belova S.E., Smagin A.V., Golyshev S.A., Tarasov A.L. 1999. Bubble's mechanism of gas transfer in the wetland soil. (M. Shibuya, K. Takahashi, G. Inoue, eds.) Proceedings of the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1998, pp. 132-142.
  28. Glagolev M.V., Ilyasov D.V., Terentieva I.E., Sabrekov A.F., Mochenov S.Yu., Maksutov S.S. 2018. Methane and carbon dioxide fluxes in the waterlogged forests of south and middle taiga of Western Siberia. IOP Conference Series: Earth and Environmental Science, 138: Article 012005.
  29. Glagolev M.V., Sabrekov A.F., Kleptsova I.E., Filippov I.V., Lapshina E.D., Machida T., Maksyutov S.S. 2012. Methane Emission from Bogs in the Subtaiga of Western Siberia: The Development of Standard Model. Eurasian Soil Science, 45(10): 947-957.
  30. Glagolev M.V., Smagin A.V., Lebedev V.S., Shnyrev N.A. 2001. Generation, mass-transfer and transformation of methane in peatland (on example of Bakcharskoe wetland). (S.V. Vasiliev, A.A. Titlyanova, A.A. Velichko, eds.) West Siberian Peatlands and Carbon Cycle: Past and Present. Proceedings of the International Field Symposium, pp. 79-81.
  31. Glukhova T.V., Ilyasov D.V., Vompersky S.E., Golovchenko A.V., Manucharova N.A., Stepanov A.L. 2021. Soil Respiration in Alder Swamp (Alnus glutinosa) in Southern Taiga of European Russia Depending on Microrelief. Forests, 12(4): Article 496.
  32. Gonzalez-Valencia R., Magana-Rodriguez F., Martinez-Cruz K., Fochesatto G.J., Thalasso F. 2021. Spatial and temporal distribution of methane emissions from a covered landfill equipped with a gas recollection system. Waste Management, 121: 373-382.
  33. Harriss R.C., Sebacher D.I., Day F.P. 1982. Methane flux in the great dismal swamp. Nature, 297: 673-674.
  34. Hawken P., Frischmann C., Bayuk K., Mehra M., Gouveia J.P., Zame K., Mukkavilli S.K. 2017. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming.
  35. IPCC. 2013. Climate Change 2013: The Physical Science Basis. URL: https://www.ipcc.ch/report/ar5/wg1/
  36. Jacinthe P.A. 2015. Carbon dioxide and methane fluxes in variably-flooded riparian forests. Geoderma, 241: 41-50.
  37. Johnson M.R., Tyner D.R., Conrad B.M. 2023. Origins of Oil and Gas Sector Methane Emissions: On-Site Investigations of Aerial Measured Sources. Environ. Sci. Technol, 57(6): 2484–2494.
  38. Keller M., Mitre M.E., Stallard R.F. 1990. Consumption of Atmospheric Methane in Soils of Central Panama: Effects of Agricultural Development. Global Biogeochemical Cycles, 4: 21-27.
  39. Kim D., Kim S. 2013. N2O and CH4 Emission from Upland Forest Soils using Chamber Methods. Journal of Korean Society for Atmospheric Environment, 29(6): 789-800.
  40. Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L., Cameron-Smith P., Castaldi S., Chevallier F., Feng L., Fraser A., Heimann M., Hodson E.L., Houweling S., Josse B., Fraser P.J., Krummel P.B., Lamarque J.-F., Langenfelds R.L., Quéré C.L., Naik V., O’Doherty S., Palmer P.I., Pison I., Plummer D., Poulter B., Prinn R.G., Rigby M., Ringeval B., Santini M., Schmidt M., Shindell D.T., Simpson I.J., Spahni R., Steele L.P., Strode S.A., Sudo K., Szopa S., van der Werf G.R., Voulgarakis A., van Weele M., Weiss R.F., Williams J.E., Zeng G. 2013. Three decades of global methane sources and sinks. Nat. Geosci, 6: 813–823.
  41. Lemer J., Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol., 37: 25-50.
  42. Lohila A., Aalto T., Aurela M., Hatakka J., Tuovinen J.P., Kilkki J., Laurila T. 2016. Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year. Geophys. Res., 43: 2946–2953.
  43. Megonigal J.P., Guenther A.B. 2008. Methane emissions from upland forest soils and vegetation. Tree Physiology, 28: 491-498.
  44. Mochenov S.Yu., Churkina A.I., Sabrekov S.F., Glagolev M.V., Il’yasov D.V., Terentieva I.E., Maksyutov S.S. 2018. Soils in seasonally flooded forests as methane sources: A case study of West Siberian South taiga. IOP Conference Series: Earth and Environmental Science, 138: Article 012012.
  45. Moore T. R., Roulet N., Knowles R. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochemical Cycles, 4: 29-46.
  46. Omara M., Zimmerman N., Sullivan M.R., Li X., Ellis A., Cesa R., Subramanian R. Presto A.A.,. Robinson A. L. 2018. Methane Emissions from Natural Gas Production Sites in the United States: Data Synthesis and National Estimate. Environ. Sci. Technol., 52(21): 12915–12925.
  47. Que Z., Wang X., Liu T., Wu S., He Y., Zhou T., Yu L., Qing Z., Chen H., Yuan X. 2023. Watershed land use change indirectly dominated the spatial variations of CH4 and N2O emissions from two small suburban rivers. Journal of Hydrology, 619: Art. 129357.
  48. Sabrekov A.F., Filippov I.V., Dyukarev E.A., Zarov E.A., Kaverin A.A., Glagolev M.V., Terentieva I.E., Lapshina E.D. 2022. Hot spots of methane emission in West Siberian middle taiga wetlands disturbed by petroleum extraction activities. Environmental Dynamics and Global Climate Change, 13(3): 142-155.
  49. Sabrekov A.F., Glagolev M.V., Fastovets I.A., Smolentsev B.A., Il’yasov D.V., Maksyutov Sh.Sh. 2015. Relationship of Methane Consumption with the Respiration of Soil and Grass–Moss Layers in Forest Ecosystems of the Southern Taiga in Western Siberia. Eurasian Soil Science, 48(8): 841–851.
  50. Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T. 2011. Methane emission from middle taiga oligotrophic hollows of western Siberia. Tomsk State Pedagogical University Bulletin, 5(107): 135-143.
  51. Savage K., Moore T.R., Crill P.M. 1997. Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils. Journal of Geophysical Research, 102(D24): 29279-29288.
  52. Seiler W., Holzapfel-Pschorn A., Conrad R., Scharffe D. 1984. Methane emission from rice paddies. J. Atmos. Chem., 1: 241–268.
  53. Singh C., Kumar A., Roy S. 2017. Estimating Potential Methane Emission from Municipal Solid Waste and a Site Suitability Analysis of Existing Landfills in Delhi, India. Technologies, 5(4): 62. https://doi.org/10.3390/technologies5040062
  54. Smagin A.V., Glagolev M.V., Suvorov G.G., Shnyrev N.A. 2003. Methods for studying gas fluxes and the composition of soil air in field conditions using a portable PGA-7 gas analyzer. Moscow University Soil Science Bulletin, 58(3): 26-35.
  55. Smith P., Clark H., Dong H., Elsiddig E.A., Haberl H., Harper R., House J., Jafari M., et al. 2014. Agriculture, forestry and other land use (AFOLU). Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to Ar5. University Press, Cambridge, 11: 811-922.
  56. Smith K.A., Dobbie K.E., Ball B.C., Bakken L.R., Sitaula B.K., Hansen S., Brumme R., Borken W., Christensen S., Prieme A., Fowler D., Macdonald J.A., Skiba U., Klemedtsson L., Kasimir-Klemedtsson A., Degorska A. and Orlanski P. 2000. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties of global terrestrial sink. Global Change Biol., 8: 885-894.
  57. Stephan, I., Askew, P., Gorbushina, A., Grinda, M., Hertel, H., Krumbein, W., Schwibbert, K. 2006. Biogenic Impact on Materials. Springer Handbook of Materials Measurement Methods, pp. 711–787.
  58. Tang A.C.I., Stoy P.C., Hirata R., Musin K.K., Aeries E.B., Wenceslaus J., Melling L. 2018. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo. Geophysical Research Letters, 45: 4390–4399.
  59. Tathy J. P., B. Cros B., Delmas R.A., Marenco A., Servant J., Labat M. 1992. Methane emission from flooded forest in central Africa. J. Geophys. Res: Atmospheres., 97(D6): 6159-6168.
  60. Ullah S., Moore T.R 2011. Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. J. Geophys. Res., 116: G03010.
  61. Walter B.P., Heimann M., Shannon R.D., White J.R. 1996. A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23: 3731-3734.
  62. Wang B., Neue H.U., Samonte H.P. 1997. Effects of cultivars difference (IR72, IR65598 and Dular) on methane emission. Agric. Ecosyst. Environ., 62: 31–40.
  63. Wang B., Neue H.U., Samonte H.P. 1999. Factors controlling diel patterns of methane emission pattern via rice plants. Nutr. Cycling Agroecosyst., 53: 229–235.
  64. Weyhenmeyer E. 1999. Methane emissions from beaver ponds: Rates, patterns, and transport mechanisms. Global Biogeochemical Cycles, 13(4): 1079-1090.
  65. Zhang H., Tuittila E., Korrensalo A., Räsänen A., Virtanen T., Aurela M., Penttilä T., Laurila T., Gerin S., Lindholm V., Lohila A. 2020. Water flow controls the spatial variability of methane emissions in a northern valley fen ecosystem. Biogeosciences, 17(23): 6247-6270.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. География исследований эмиссии метана* в избыточно увлажненных лесах


© Runkov R.A., Ilyasov D.V., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах