Spatial variability of methane emissions from soils of wet forests: a brief review

Cover Page

Cite item

Full Text

Abstract

Methane is one of the most important greenhouse gases that cause climate change [Karol and Kiselev, 2003]. An increase in the atmospheric concentration of methane contributes to an increase in the temperature on the Earth, because this gas absorbs outgoing thermal radiation from the Earth's surface [Berdin, 2004]. Methane has a much shorter atmospheric lifetime than carbon dioxide (CO2), but CH4 absorbs certain wavelengths of energy more efficiently than СО2. The global warming potential of CH4 is 28 times greater than that of CO2 over a 100-year period [IPCC, 2013]. Its contribution to the formation of the greenhouse effect is 30% of the value assumed for carbon dioxide (Bazhin, 2006). Methane is removed from the atmosphere by photochemical oxidation in the troposphere and, to a lesser extent, by microbial oxidation in soils (Kirschke et al., 2013).

Methane sources can be both natural and anthropogenic. The latter includes, firstly, industrial processes:

  • fuel use [Omara et al., 2018; Johnson et al., 2023] (if the fuel is not completely burned, then methane gas is emitted into the air, besides it can also be released during the extraction and transportation of natural gas [Hawken et al., 2017]);
  • food production (eg CH4 can be generated from the fermentation of food residues that were not used in the production process [Stephan et al., 2006]);
  • as a result of microbial activity during the processing of waste in landfills and compost heaps (for example, in the process of biological waste treatment, methane can be produced in large quantities if the process is not properly controlled [Singh et al., 2017]).

Secondly, two types of agricultural production are anthropogenic sources:

  • rice cultivation [Seiler et al., 1984; Dannenberg and Conrad, 1999; Wang et al. 1997; Wang et al., 1999];
  • cattle breeding [Gerber et al., 2013; Johnson et al., 2023; Ellis et al., 2007].

CH4 is formed as a result of the biological decomposition of organic matter in the absence of oxygen [Dlugokencky and Houweling, 2003]. The most significant natural sources of methane are wetlands. Besides, methane can be emitted from aquatic ecosystems such as lakes and rivers. The decomposition of organic wastes in the soil, such as plant residues and animal manure, is also a natural source of methane (Smith et al., 2014) if this decomposition occurs under anaerobic conditions.

Of great interest is the study of wet forests [Glukhova et al., 2021], since their contribution to methane emission can be quite significant. It is generally recognized that forests are CH4 sinks [Lemer and Roger, 2001; Megonigal and Guenther, 2008; Smith et al., 2000]. Nevertheless, very high CH4 fluxes were detected during spot measurements in some wet forests [Lohila et al., 2016; Tathy et al., 1992], that were comparable to the fluxes observed in wetlands [Harriss et al., 1982; Sabrekov et al., 2011; Glagolev et al., 2012; Davydov et al., 2021] (Fig. 1). However, single measurements of fluxes at individual spatial sites are clearly not enough to assess the role of wet forests in the overall methane balance. This role can be assessed only by knowing the dynamics of emission in time and its distribution in space.

A comprehensive study of the variability of methane emission (from soils in general) began at the end of the 20th century in countries with significant areas of waterlogged soils: Brazil, Canada, the USA, and Russia [Bartlett et al., 1988; Moore et al., 1990; Disse, 1993; Glagolev et al., 1999]. At present, the emission spatial variability is studied in almost all regions of the world, including Finland, Mexico, and China [Zhang et al., 2020; Gonzalez-Valencia et al., 2021; Que et al., 2023]. However, there is very little data on the spatial variability of methane emissions in wet forests. Therefore, it is evident that current research should be focused on assessing the spatial variability of emissions in different types of wet forests.

Emission of methane in wet forests. The main works devoted to measurements of the specific flux of methane in wet forests are summarized in Table 1. 1-3. It can be seen from the tables (and Fig. 2) that there is no clear relationship between the specific flux and the geographic location of the wet forest: in the “north” (in the boreal zone - about 57-67oN), values of ~4÷9 mg∙h-1∙m-2 can be measured [Lohila et al., 2016; Mochenov et al., 2018], that are similar to those typical for the tropics (~3÷8 mg∙h-1∙m-2 [Devol et al., 1990; Tathy et al., 1992]). On the contrary, in the south, values <1 or even <0.1 mg∙h-1∙m-2 can be measured that are more typical for northern territories.

There is no doubt, everything is determined by environmental factors. The results of [Ulah and Moor, 2011] show that changes in soil temperature and moisture can have a significant impact on CH4 fluxes from forest soils. This often leads to so-called "hotspots" such as peak emissions from poorly drained soils when the pore space is filled with water and to a lower CO2:CH4 emission ratio. However, these factors are likely to be unequal.

In fact, the flow rate is determined rather by the degree of anaerobiosis, depending on the conditions of humidity, than the temperature (the formation of CH4 should be very active at both 40o and 20°C assuming that temperatures around 20°C are quite common for the summer period in the boreal zone). It is certain, under the same humidity conditions, based on the well-known van't Hoff low, one can expect that the rate of methane production in the tropics at 40°C should be approximately 4-9 times higher than that at 20°C under boreal conditions. Yet, if there is a very deep anaerobiosis in the boreal zone (due to the complete watering of the soil) but wet soil in the tropics, then the above mentioned ratio can be reversed.

The extremely strong dependence of methane production on the degree of anaerobiosis (and, hence, on humidity conditions) provides a very wide spatial variability of the emission. It can be seen from the data in Table 1 that, for example, in three seasonally flooded forests in Western Siberia, located at a distance of only about 5-10 km from each other, the entire spectrum of possible specific CH4 fluxes was observed at the same time, from absorption at a level of ~0.1 mg h-1 m-2 to a very active emission of ~10 mg h-1 m-2 [Mochenov et al., 2018]. An even more contrasting picture is observed, for example, in the mountain forest in Brazil and in the tropical forest of the Congo: within the same forest, the specific flux varies from 0 to 54 mg∙h-1∙m-2 [Bartlett et al., 1988] and from -0.31 to 150 mg∙h-1∙m-2, respectively (see Table 3). However, it is not always possible to find out the dependence of the flow on certain factors. For example, the measurements reported in Tang et al. [2018] showed that CH4 flux from tropical peat forest was similar to that from other managed and natural wetland ecosystems, including those located in different climate zones. However, meteorological variability in the rainforest does not correlate well with CH4 flux. Such apparent lack of correlation can be explained by the small range of micrometeorological variables in the tropical peat ecosystem.

Ambus and Christensen [1995] studied several ecosystems where temporary waterlogging was possible. They made the following important assumption: the calculation of the total flux for periodically waterlogged ecosystems should be performed taking into account the topography of the landscape. Indeed, a more accurate estimate of methane consumption and emission can be obtained in this way, but the correct estimations of the gas flow by the chamber method requires taking into account the relative water levels during flooding. Knowing the topography and hydrology of each site in the area makes it possible to determine how long and how often this site remains relatively wet or dry [Glagolev et al., 2018].

From the above data, it is clear that there is a need to improve the quantitative assessment of the global methane emission from the soils of wet forests. Despite the establishment of a complex infrastructure for monitoring greenhouse gases on a global scale (eg ICOS, GMB, etc.), ground-based observations in wet forests on various continents are still underrepresented. Therefore, the contribution of forests to the global atmospheric exchange of CH4 remains uncertain.

About the authors

R A Runkov

МГУ имени М.В. Ломоносова

Author for correspondence.
Email: rus_runkov@mail.ru
Russian Federation

D. V. Ilyasov

Yugra State University, Khanty-Mansiysk

Email: d_ilyasov@ugrasu.ru

References

  1. Bazhin N.M. 2006. The role of methane in the process of global warming of the Earth's atmosphere. Elektronnyi zhurnal energoservisnoi kompanii “Ekologicheskie sistemy”, 1: 49 (in Russian). [Бажин Н. М. 2006. Роль метана в процессе глобального потепления атмосферы Земли // Экологические системы. №. 1. C. 49.] (date of the application 4.03.2023)
  2. URL: http://downloads.igce.ru/publications/Semenov_S_M_etc_2018/Methane_and_climate_Sep_24_2018.pdf.
  3. Berdin V.Kh. 2004. Reference Guide. Greenhouse gases are a global environmental resource. WWF Russia, Moscow, 12 pp. (in Russian). [Бердин В. Х. 2004. Парниковые газы—глобальный экологический ресурс: Справочное пособие. Москва. 12 с.]
  4. Burba G.G., Kurbatova Yu.A., Kuricheva O.A., Avilov V.K., Mamkin V.V. 2016. Turbulent pulsation method. A quick how-to guide. LI-COR Biosciences. A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, (in Russian). [Бурба Г.Г., Курбатова Ю.А., Куричева О.А., Авилов В.К., Мамкин В.В. 2016. Метод турбулентных пульсаций. Краткое практическое руководство // LI-COR Biosciences. М.: Институт проблем экологии и эволюции им. А.Н. Северцова РАН.]
  5. Glagolev M.V. 2010. Inverse modelling method for the determination of the gas flux from the soil. Environmental Dynamics and Global Climate Change, 1(1): 17-36 (in Russian). [Глаголев М.В. 2010. К методу "обратной задачи" для определения поверхностной плотности потока газа из почвы // Динамика окружающей среды и глобальные изменения климата. Т. 1. № 1. С. 17-36.]
  6. Glagolev M.V., Golyshev S.A., Firsov S.Yu. 1999. Assessment of methane transfer from soil to atmosphere by wetland plants. Bolota i zabolochennye lesa v svete zadach ustoichivogo prirodopol'zovaniya. Meeting materials, 177-180 pp. (in Russian). [Глаголев М.В., Голышев С.А., Фирсов С.Ю. 1999. Оценка переноса метана из почвы в атмосферу болотными растениями // Болота и заболоченные леса в свете задач устойчивого природопользования. Материалы совещания. С. 177-180.]
  7. Evgrafova S.Yu., Grodnitskaya I.D., Krinitsyn Yu.O., Syrtsov S.N., Masyagina O.V. 2010. Emission of methane from the soil surface in tundra and forest ecosystems of Siberia. The Bulletin of KrasGAU. 12: 80-86 (in Russian). [Евграфова С.Ю., Гродницкая И.Д., Криницын Ю.О., Сырцов С.Н., Масягина О.В. 2010. Эмиссия метана с поверхности почвы в тундровых и лесных экосистемах Cибири // Вестник КрасГАУ. № 12. С. 80-86.]
  8. Karol' I.L., Kiselev A.A. 2003. Assessment of damage to the "health" of the atmosphere. Priroda, 6: 25-30 (in Russian). [Кароль И.Л., Киселев А.А. 2003. Оценка ущерба "здоровью" атмосферы // Природа. № 6. C. 25-30.]
  9. Sirin A.A., Suvorov G.G., Chistotin M.V., Glagolev M.V. 2012. Values of methane emission from drainage ditches. Environmental Dynamics and Global Climate Change, 3(2): 1-10. (in Russian). [Сирин А.А., Суворов Г.Г., Чистотин М.В., Глаголев М.В. 2012. О значениях эмиссии метана из осушительных каналов // Динамика окружающей среды и глобальные изменения климата. Т. 3. №2. C. 1-10.].
  10. Amaral J. A., Knowles R. 1994. Methane Metabolism in a Temperate Swamp. Applied and Environmental Microbiology, 60(11): 3945-3951.
  11. Ambus P., Christensen S. 1995. Spatial and Seasonal Nitrous Oxide and Methane Fluxes in Danish Forest‐, Grassland‐, and Agroecosystems. Journal of Environmental Quality, 24: 993-1001.
  12. Barber T.R., Burke Jr.R.A., Sackerr W.M. 1988. Diffusive flux of methane from warm wetlands. Global Biogeochemical Cycles, 2(4): 411-425.
  13. Barthel M., Bauters M, Baumgartner S., Drake T.W., Bey N.M., Bush G., Boeckx P., Botefa C.I., Dériaz N., Ekamba G.L., Gallarotti N.,. Mbayu F.M, Mugula J.K., Makelele I.A., Mbongo C.E., Mohn J., Mandea J.Z., Mpambi D.M., Ntaboba L.C., Rukeza M.B., Spencer R.G.M., Summerauer L., Vanlauwe B., Oost K.V., Wolf B., Six J. 2022. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat Commun., 13: Article 330.
  14. Bartlett K.B., Crill P.M., Seebacher D.I., Harriss R.C., Wilson J.O., Melack J.M. 1988. Methane flux from the Central Amazonian floodplain. J. Geophys Res: Atmospheres, 93: 1571-1582.
  15. Burba G. 2005. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. Lincoln: LI-COR® Biosciences.
  16. Crill P.M., Bartlett K.B., Harriss R.C., Gorham E., Verry E.S., Sebacher D.I., Madzar L., Sanner W. 1988. Methane flux from Minnesota peatlands. Global Biogeochemical Cycles, 2(4): 371-384.
  17. Christiansen J.R., Vesterdal L. Gundersen P. 2012. Nitrous oxide and methane exchange in two small temperate forest catchments—effects of hydrological gradients and implications for global warming potentials of forest soils. Biogeochemistry, 107: 437–454
  18. Dannenberg S., Conrad R. 1999. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry, 45: 53–71.
  19. Davydov D.K., Dyachkova A.V., Krasnov O.A., Simonenkov D.V., Fofonov A.V., Maksyutov S.S. 2021. Application of the automated chamber method for longterm measurements CO2 and CH4 fluxes from wetland ecosystems of the West Siberia. Environmental Dynamics and Global Climate Change, 12(1): 5–14.
  20. Devol A.H, Richey J.E., Forsberg B.R., Martinelli L.A. 1990. Seasonal Dynamics in Methane Emissions from the Amazon River Floodplain to the Troposphere. J Geophys Res., 95: 16417-16426.
  21. Dise N. 1993. Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochem Cy., 7: 123-142.
  22. Dlugokencky E., Houweling S. 2003. Methane. Encyclopedia of Atmospheric Sciences. Academic Press, pp. 1286-1294.
  23. Ellis J.L., Kebreab E., Odongo N.E., McBride B.W., Okine E.K., France J. 2007. Prediction of Methane Production from Dairy and Beef Cattle. Am Dairy Science Association, 90: 3456–3467.
  24. Foken T. 2008. Micrometeorology. Springer, 320 pp.
  25. Frey B., Niklaus P.A., Kremer J., Lüscher P., Zimmermann S. 2011. Heavy machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils. Applied and Environmental Microbiology, 77: 6060-6068.
  26. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. 2013. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO).
  27. Glagolev M.V., Belova S.E., Smagin A.V., Golyshev S.A., Tarasov A.L. 1999. Bubble's mechanism of gas transfer in the wetland soil. (M. Shibuya, K. Takahashi, G. Inoue, eds.) Proceedings of the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1998, pp. 132-142.
  28. Glagolev M.V., Ilyasov D.V., Terentieva I.E., Sabrekov A.F., Mochenov S.Yu., Maksutov S.S. 2018. Methane and carbon dioxide fluxes in the waterlogged forests of south and middle taiga of Western Siberia. IOP Conference Series: Earth and Environmental Science, 138: Article 012005.
  29. Glagolev M.V., Sabrekov A.F., Kleptsova I.E., Filippov I.V., Lapshina E.D., Machida T., Maksyutov S.S. 2012. Methane Emission from Bogs in the Subtaiga of Western Siberia: The Development of Standard Model. Eurasian Soil Science, 45(10): 947-957.
  30. Glagolev M.V., Smagin A.V., Lebedev V.S., Shnyrev N.A. 2001. Generation, mass-transfer and transformation of methane in peatland (on example of Bakcharskoe wetland). (S.V. Vasiliev, A.A. Titlyanova, A.A. Velichko, eds.) West Siberian Peatlands and Carbon Cycle: Past and Present. Proceedings of the International Field Symposium, pp. 79-81.
  31. Glukhova T.V., Ilyasov D.V., Vompersky S.E., Golovchenko A.V., Manucharova N.A., Stepanov A.L. 2021. Soil Respiration in Alder Swamp (Alnus glutinosa) in Southern Taiga of European Russia Depending on Microrelief. Forests, 12(4): Article 496.
  32. Gonzalez-Valencia R., Magana-Rodriguez F., Martinez-Cruz K., Fochesatto G.J., Thalasso F. 2021. Spatial and temporal distribution of methane emissions from a covered landfill equipped with a gas recollection system. Waste Management, 121: 373-382.
  33. Harriss R.C., Sebacher D.I., Day F.P. 1982. Methane flux in the great dismal swamp. Nature, 297: 673-674.
  34. Hawken P., Frischmann C., Bayuk K., Mehra M., Gouveia J.P., Zame K., Mukkavilli S.K. 2017. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming.
  35. IPCC. 2013. Climate Change 2013: The Physical Science Basis. URL: https://www.ipcc.ch/report/ar5/wg1/
  36. Jacinthe P.A. 2015. Carbon dioxide and methane fluxes in variably-flooded riparian forests. Geoderma, 241: 41-50.
  37. Johnson M.R., Tyner D.R., Conrad B.M. 2023. Origins of Oil and Gas Sector Methane Emissions: On-Site Investigations of Aerial Measured Sources. Environ. Sci. Technol, 57(6): 2484–2494.
  38. Keller M., Mitre M.E., Stallard R.F. 1990. Consumption of Atmospheric Methane in Soils of Central Panama: Effects of Agricultural Development. Global Biogeochemical Cycles, 4: 21-27.
  39. Kim D., Kim S. 2013. N2O and CH4 Emission from Upland Forest Soils using Chamber Methods. Journal of Korean Society for Atmospheric Environment, 29(6): 789-800.
  40. Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L., Cameron-Smith P., Castaldi S., Chevallier F., Feng L., Fraser A., Heimann M., Hodson E.L., Houweling S., Josse B., Fraser P.J., Krummel P.B., Lamarque J.-F., Langenfelds R.L., Quéré C.L., Naik V., O’Doherty S., Palmer P.I., Pison I., Plummer D., Poulter B., Prinn R.G., Rigby M., Ringeval B., Santini M., Schmidt M., Shindell D.T., Simpson I.J., Spahni R., Steele L.P., Strode S.A., Sudo K., Szopa S., van der Werf G.R., Voulgarakis A., van Weele M., Weiss R.F., Williams J.E., Zeng G. 2013. Three decades of global methane sources and sinks. Nat. Geosci, 6: 813–823.
  41. Lemer J., Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol., 37: 25-50.
  42. Lohila A., Aalto T., Aurela M., Hatakka J., Tuovinen J.P., Kilkki J., Laurila T. 2016. Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year. Geophys. Res., 43: 2946–2953.
  43. Megonigal J.P., Guenther A.B. 2008. Methane emissions from upland forest soils and vegetation. Tree Physiology, 28: 491-498.
  44. Mochenov S.Yu., Churkina A.I., Sabrekov S.F., Glagolev M.V., Il’yasov D.V., Terentieva I.E., Maksyutov S.S. 2018. Soils in seasonally flooded forests as methane sources: A case study of West Siberian South taiga. IOP Conference Series: Earth and Environmental Science, 138: Article 012012.
  45. Moore T. R., Roulet N., Knowles R. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochemical Cycles, 4: 29-46.
  46. Omara M., Zimmerman N., Sullivan M.R., Li X., Ellis A., Cesa R., Subramanian R. Presto A.A.,. Robinson A. L. 2018. Methane Emissions from Natural Gas Production Sites in the United States: Data Synthesis and National Estimate. Environ. Sci. Technol., 52(21): 12915–12925.
  47. Que Z., Wang X., Liu T., Wu S., He Y., Zhou T., Yu L., Qing Z., Chen H., Yuan X. 2023. Watershed land use change indirectly dominated the spatial variations of CH4 and N2O emissions from two small suburban rivers. Journal of Hydrology, 619: Art. 129357.
  48. Sabrekov A.F., Filippov I.V., Dyukarev E.A., Zarov E.A., Kaverin A.A., Glagolev M.V., Terentieva I.E., Lapshina E.D. 2022. Hot spots of methane emission in West Siberian middle taiga wetlands disturbed by petroleum extraction activities. Environmental Dynamics and Global Climate Change, 13(3): 142-155.
  49. Sabrekov A.F., Glagolev M.V., Fastovets I.A., Smolentsev B.A., Il’yasov D.V., Maksyutov Sh.Sh. 2015. Relationship of Methane Consumption with the Respiration of Soil and Grass–Moss Layers in Forest Ecosystems of the Southern Taiga in Western Siberia. Eurasian Soil Science, 48(8): 841–851.
  50. Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T. 2011. Methane emission from middle taiga oligotrophic hollows of western Siberia. Tomsk State Pedagogical University Bulletin, 5(107): 135-143.
  51. Savage K., Moore T.R., Crill P.M. 1997. Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils. Journal of Geophysical Research, 102(D24): 29279-29288.
  52. Seiler W., Holzapfel-Pschorn A., Conrad R., Scharffe D. 1984. Methane emission from rice paddies. J. Atmos. Chem., 1: 241–268.
  53. Singh C., Kumar A., Roy S. 2017. Estimating Potential Methane Emission from Municipal Solid Waste and a Site Suitability Analysis of Existing Landfills in Delhi, India. Technologies, 5(4): 62. https://doi.org/10.3390/technologies5040062
  54. Smagin A.V., Glagolev M.V., Suvorov G.G., Shnyrev N.A. 2003. Methods for studying gas fluxes and the composition of soil air in field conditions using a portable PGA-7 gas analyzer. Moscow University Soil Science Bulletin, 58(3): 26-35.
  55. Smith P., Clark H., Dong H., Elsiddig E.A., Haberl H., Harper R., House J., Jafari M., et al. 2014. Agriculture, forestry and other land use (AFOLU). Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to Ar5. University Press, Cambridge, 11: 811-922.
  56. Smith K.A., Dobbie K.E., Ball B.C., Bakken L.R., Sitaula B.K., Hansen S., Brumme R., Borken W., Christensen S., Prieme A., Fowler D., Macdonald J.A., Skiba U., Klemedtsson L., Kasimir-Klemedtsson A., Degorska A. and Orlanski P. 2000. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties of global terrestrial sink. Global Change Biol., 8: 885-894.
  57. Stephan, I., Askew, P., Gorbushina, A., Grinda, M., Hertel, H., Krumbein, W., Schwibbert, K. 2006. Biogenic Impact on Materials. Springer Handbook of Materials Measurement Methods, pp. 711–787.
  58. Tang A.C.I., Stoy P.C., Hirata R., Musin K.K., Aeries E.B., Wenceslaus J., Melling L. 2018. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo. Geophysical Research Letters, 45: 4390–4399.
  59. Tathy J. P., B. Cros B., Delmas R.A., Marenco A., Servant J., Labat M. 1992. Methane emission from flooded forest in central Africa. J. Geophys. Res: Atmospheres., 97(D6): 6159-6168.
  60. Ullah S., Moore T.R 2011. Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. J. Geophys. Res., 116: G03010.
  61. Walter B.P., Heimann M., Shannon R.D., White J.R. 1996. A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23: 3731-3734.
  62. Wang B., Neue H.U., Samonte H.P. 1997. Effects of cultivars difference (IR72, IR65598 and Dular) on methane emission. Agric. Ecosyst. Environ., 62: 31–40.
  63. Wang B., Neue H.U., Samonte H.P. 1999. Factors controlling diel patterns of methane emission pattern via rice plants. Nutr. Cycling Agroecosyst., 53: 229–235.
  64. Weyhenmeyer E. 1999. Methane emissions from beaver ponds: Rates, patterns, and transport mechanisms. Global Biogeochemical Cycles, 13(4): 1079-1090.
  65. Zhang H., Tuittila E., Korrensalo A., Räsänen A., Virtanen T., Aurela M., Penttilä T., Laurila T., Gerin S., Lindholm V., Lohila A. 2020. Water flow controls the spatial variability of methane emissions in a northern valley fen ecosystem. Biogeosciences, 17(23): 6247-6270.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Runkov R.A., Ilyasov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies