Pandemic COVID-19 and environmental pollution (literature review)

Cover Page

Cite item

Full Text

Abstract

The purpose of this article is to review and analyze the literature on the impact of the COVID-19 pandemic on the environment and, conversely, on the environmental impact on the spread of SARS-CoV-2.

The literature search was carried out using the MedLine, PubMed and eLIBRARY databases.

Thanks to measures to combat the COVID-19 pandemic, the world experienced a sharp decline in economic activity, which in turn led to improvements in air and water quality and contributed to the global reduction in greenhouse gas emissions, but this improvement was short-lived. Quarantine measures not only protect the population from COVID-19, but also positively affect the environmental quality. At the same time, the amount of plastic medical waste, such as used public and personal protective equipment against COVID-19, increased, and as a result, the problem of their disposal arose. This has led to the contamination of the water and land physical spaces and created the population contamination threat. Using the concentration of SARS-CoV-2 RNA from urban wastewater and subsequent counting of viral RNAs by quantitative reverse transcriptase polymerase chain reaction, an early determination of COVID-19 was carried out by modelling in specific populations. The presence of SARS-CoV-2 RNA in wastewater is a potential public health risk. High levels of environmental pollution (long-term exposure to derivatives of fossil fuel combustion), meteorological parameters (ionizing and UV radiation), and cigarette smoke, are considered to be additional factors increasing the spread and mortality of COVID-19.

The SARS-CoV-2 viability depends on aquatic and terrestrial environmental parameters.

Contribution:
Sizova E.N. — writing a text, collection of literature data, editing;
Shmakova L.N. — editing;
Vidyakina E.V. — collection of literature data.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version. 

Conflict of interest. The authors declare no conflict of interest. 

Acknowledgment. The investigation was not sponsored

Received: May 4, 2022 / Accepted: August 04, 2022 / Published: September 30, 2022 

About the authors

Elena N. Sizova

Kirov State Medical University

Author for correspondence.
Email: cizovahelena@mail.ru
ORCID iD: 0000-0002-7339-2063

MD, PhD., DSci., professor of the Kirov State Medical University, Kirov, 610998, Russian Federation.

e-mail: cizovahelena@mail.ru

Russian Federation

Ludmila N. Shmakova

Kirov State Medical University

Email: noemail@neicon.ru
ORCID iD: 0000-0003-2998-1909
Russian Federation

Evgenia V. Vidyakina

Kirov State Medical University

Email: noemail@neicon.ru
ORCID iD: 0000-0002-5394-5206
Russian Federation

References

  1. Ma C.J., Kang G.U. Air quality variation in Wuhan, Daegu, and Tokyo during the explosive outbreak of COVID-19 and its health effects. Int. J. Environ. Res. Public Health. 2020; 17(11): 4119. https://doi.org/10.3390/ijerph17114119
  2. Myllyvirta L. Coronavirus temporarily reduced China’s CO2 emissions by a quarter. Carbon Brief; 2020. Available at: https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter
  3. Yunus A.P., Masago Y., Hijioka Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020; 731: 139012. https://doi.org/10.1016/j.scitotenv.2020.139012
  4. Braga F., Scarpa G.M., Brando V.E., Manfè G., Zaggia L. COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon. Sci. Total Environ. 2020; 736: 139612 https://doi.org/10.1016/j.scitotenv.2020.139612
  5. Kanniah K.D., Kamarul Zaman N.A.F., Kaskaoutis D.G., Latif M.T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Total Environ. 2020; 736: 139658. https://doi.org/10.1016/j.scitotenv.2020.139658
  6. Sweney M. Coronavirus: air travel demand ‘will fall for first time in 11 years’. Available at: https://www.theguardian.com/business/2020/feb/21/coronavirus-air-travel-demand-to-fall-for-first-time-in-11-years
  7. Sicard P., De Marco A., Agathokleous E., Feng Z., Xu X., Paoletti E., et al. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020; 735: 139542. https://doi.org/10.1016/j.scitotenv.2020.139542
  8. Lal P., Kumar A., Kumar S., Kumari S., Saikia P., Dayanandan A., et al. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Sci. Total Environ. 2020; 732: 139297. https://doi.org/10.1016/j.scitotenv.2020.139297
  9. Wang Q., Su M. A preliminary assessment of the impact of COVID-19 on environment – a case study of China. Sci. Total Environ. 2020; 728: 138915. https://doi.org/10.1016/j.scitotenv.2020.138915
  10. Saadat S., Rawtani D., Hussain C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020; 728: 138870. https://doi.org/10.1016/j.scitotenv.2020.138870
  11. CNBC. Yen Nee Lee. 6 charts show the coronavirus impact on the global economy and markets so far; 2020. Available at: https://www.cnbc.com/2020/03/12/coronavirus-impact-on-global-economy-financial-markets-in-6-charts.html
  12. Patrício Silva A.L., Prata J.C., Walker T.R., Campos D., Duarte A.C., Soares A.M.V.M., et al. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 2020; 742: 140565. https://doi.org/10.1016/j.scitotenv.2020.140565
  13. Zambrano-Monserrate M.A., Ruano M.A., Sanchez-Alcalde L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020; 728: 138813. https://doi.org/10.1016/j.scitotenv.2020.138813
  14. Mol M.P.G., Caldas S. Can the human coronavirus epidemic also spread through solid waste? Waste Manag Res. 2020; 38(5): 485–6. https://doi.org/10.1177/0734242X20918312
  15. Cheval S., Mihai Adamescu C., Georgiadis T., Herrnegger M., Piticar A., Legates D.R. Observed and Potential Impacts of the COVID-19 Pandemic on the Environment. Int J Environ Res Public Health. 2020; 17(11): 4140. https://doi.org/10.3390/ijerph17114140
  16. Randazzo W., Truchado P., Cuevas-Ferrando E., Simón P., Allende A., Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020; 181: 115942. https://doi.org/10.1016/j.watres.2020.115942
  17. Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J.W., et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020; 728: 138764. https://doi.org/10.1016/j.scitotenv.2020.138764
  18. Lodder W., de Roda Husman A.M. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020; 5(6): 533–4. https://doi.org/10.1016/S2468-1253(20)30087-X
  19. Sharma A.K., Balyan P. Air pollution and COVID-19: Is the connect worth its weight? Indian J. Public Health. 2020; 64(Suppl.): S132–4. https://doi.org/10.4103/ijph.IJPH_466_20
  20. Conticini E., Frediani B., Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020; 261: 114465. https://doi.org/10.1016/j.envpol.2020.114465
  21. Bashir M.F., Ma B.J., Bilal, Komal B., Bashir M.A., Farooq T.H., et al. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ. Res. 2020; 187: 109652. https://doi.org/10.1016/j.envres.2020.109652
  22. Bornstein S.R., Voit-Bak K., Schmidt D., Morawietz H., Bornstein A.B., Balanzew W., et al. Is there a role for environmental and metabolic factors predisposing to severe COVID-19? Horm. Metab. Res. 2020; 52(7): 540–6. https://doi.org/10.1055/a-1182-2016
  23. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020; 726: 138605. https://doi.org/10.1016/j.scitotenv.2020.138605
  24. Zhu Y., Xie J., Huang F., Cao L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020; 727: 138704. https://doi.org/10.1016/j.scitotenv.2020.138704
  25. Adhikari A., Yin J. Short-term effects of ambient ozone, PM2.5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York. Int. J. Environ. Res. Public Health. 2020; 17(11): 4047. https://doi.org/10.3390/ijerph17114047
  26. Ma Y., Zhao Y., Liu J., He X., Wang B., Fu S., et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020; 724: 138226. https://doi.org/10.1016/j.scitotenv.2020.138226
  27. Sizova E.N., Shmakova L.N., Vidyakina E.V. Medical ecology of SARS-CoV-2 (literature review). Vyatskiy meditsinskiy vestnik. 2020; (3): 98–103. https://doi.org/10.24411/2220-7880-2020-10115 (in Russian)
  28. BBC. Coronavirus: Wuhan shuts public transport over outbreak. Available at: https://www.bbc.com/news/world-asia-china-51215348
  29. SCMP. Coronavirus sends China’s aviation industry into free fall, damaging hopes of becoming global hub. Available at: https://www.scmp.com/economy/china-economy/article/3065236/coronavirus-sends-chinas-aviation-industry-free-fall-damaging
  30. Carbon Brief. Myllyvirta L. As China emerges from one of the most serious epidemics of the century – even as much of the rest of the world remains in a coronavirus crisis – the country’s energy demand and emissions are beginning to return to normal. Available at: https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter
  31. CarbonBrief. Myllyvirta L. Analysis: Coronavirus temporarily reduced China’s CO2 emissions by a quarter. Available at: https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter/
  32. Silaeva P.Yu., Silaev A.V. Peculiarities of dispersion of nitrogen dioxide emissions by the energy complex enterprises and their impact on the population of megapolises. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost’ zhiznedeyatel’nosti. 2018; 26(1): 63–72. https://doi.org/10.22363/2313-2310-2018-26-1-63-72 (in Russian)
  33. RenEn. Air pollution goes down as Europe takes hard measures to combat coronavirus; 2020. Available at: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as
  34. ESA. Coronavirus: nitrogen dioxide emissions drop over Italy. Available at: https://www.esa.int/ESA_Multimedia/Videos/2020/03/Coronavirus_nitrogen_dioxide_emissions_drop_over_Italy
  35. Evening Express. Air pollution falls as UK goes into coronavirus lockdown. Available at: https://www.eveningexpress.co.uk/news/uk/air-pollution-falls-as-uk-goes-into-coronavirus-lockdown/
  36. BBC. Coronavirus: Air pollution and CO2 fall rapidly as virus spreads. Available at: https://www.bbc.com/news/science-environment-51944780
  37. CarbonBrief. Coronavirus temporarily reduced China’s CO2 emissions by a quarter. Available at: https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter
  38. Otmani A., Benchrif A., Tahri M., Bounakhla M., Chakir E.M., El Bouch M., et al. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020; 735: 139541. https://doi.org/10.1016/j.scitotenv.2020.139541
  39. Muhammad S., Long X., Salman M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020; 728: 138820. https://doi.org/10.1016/j.scitotenv.2020.138820
  40. Urrutia-Pereira M., Mello-da-Silva C.A., Solé D. COVID-19 and air pollution: A dangerous association? Allergol. Immunopathol. (Madr.). 2020; 48(5): 496–9. https://doi.org/10.1016/j.aller.2020.05.004
  41. RenEn. Coronavirus will help Germany achieve the goal of reducing greenhouse gas emissions for 2020; 2020. Available at: https://renen.ru/koronavirus-pomozhet-frg-dostich-tseli-po-snizheniyu-vybrosov-parnikovyh-gazov-na-2020-god/ (in Russian)
  42. WMO. Economic slowdown as a result of COVID-19 is no substitute for Climate Action. Available at: https://public.wmo.int/en/media/news/economic-slowdown-result-of-covid-no-substitute-climate-action
  43. Global Monitoring Laboratory Earth System Research Laboratories. Trends in Atmospheric Carbon Dioxide. Available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/
  44. Harvard Business Review. Carlsson-Szlezak P., Reeves M., Swartz P. What Coronavirus could mean for the global economy; 2020 Available at: https://hbr.org/2020/03/what-coronavirus-could-mean-for-the-global-economy
  45. European Public Health Alliance. Coronavirus threat greater for polluted cities; 2020. Available at: https://epha.org/coronavirus-threat-greater-for-polluted-cities/
  46. Paital B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci. Total Environ. 2020; 729: 139088. https://doi.org/10.1016/j.scitotenv.2020.139088
  47. News from CICERO. The flip side of the new Coronavirus outbreak – reduced air pollution mortalities? Available at: https://cicero.oslo.no/en/posts/single/the-flip-side-of-the-new-coronavirus-outbreak-reduced-air-pollution-mortalities
  48. Tsatsakis A., Petrakis D., Nikolouzakis T.K., Docea A.O., Calina D., Vinceti M., et al. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem. Toxicol. 2020; 141: 111418. https://doi.org/10.1016/j.fct.2020.111418
  49. Moelling K., Broecker F. Air microbiome and pollution: composition and potential effects on human health, including SARS coronavirus infection. J. Environ. Public Health. 2020; 2020: 1646943. https://doi.org/10.1155/2020/1646943
  50. Smith J.C., Sausville E.L., Girish V., Yuan M.L., Vasudevan A., John K.M., et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev. Cell. 2020; 53(5): 514–29. https://doi.org/10.1016/j.devcel.2020.05.012
  51. Revich B.A., Shaposhnikov D.A. The Covid-19 pandemic: new knowledge on the impact of air quality on the spread of coronavirus infection in cities. Problemy prognozirovaniya. 2021; 32(4): 357–63. https://doi.org/10.1134/S1075700721040134

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Sizova E.N., Shmakova L.N., Vidyakina E.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.