Application of Flow Cytometry for Viability Assessment of Mutants for Translation Termination Factors in the Yeast Saccharomyces cerevisiae

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nonsense mutations in the essential SUP45 and SUP35 genes, encoding translation termination factors, affect the viability of Saccharomyces cerevisiae cells. Flow cytometry revealed that the viability of mutants was 3.5‒4 times lower compared to the wild-type. Moreover, the mutants were found to have higher sensitivity to ultrasonic treatment.

Full Text

Restricted Access

About the authors

E. P. Efremova

St. Petersburg State University

Email: g.zhuravleva@spbu.ru
Russian Federation, St Petersburg, 199034

O. M. Zemlyanko

St. Petersburg State University; Laboratory of Amyloid Biology SPBU

Email: g.zhuravleva@spbu.ru
Russian Federation, St Petersburg, 199034; St Petersburg, 199034

G. A. Zhouravleva

St. Petersburg State University; Laboratory of Amyloid Biology SPBU

Author for correspondence.
Email: g.zhuravleva@spbu.ru
Russian Federation, St Petersburg, 199034; St Petersburg, 199034

References

  1. Журавлева Г.А., Бондарев С.А., Землянко О.М., Москаленко С.Е. Роль белков, взаимодействующих с факторами терминации трансляции eRF1 и eRF3, в регуляции трансляции и прионизации // Мол. биология. 2022. Т. 56. С. 206–226.
  2. https://doi.org/10.31857/S002689842201013X
  3. Alexandrov A., Grosfeld E., Mitkevich O., Bidyuk V., Nostaeva A., Kukhtevich I., Schneider R., et al. Systematic identification of yeast mutants with increased rates of cell death reveals rapid stochastic necrosis associated with cell division // bioRxiv. 2021.
  4. https://doi.org/10.1101/2021.10.20.465133
  5. Barbitoff Y., Matveenko A., Matiiv A., Maksiutenko E., Moskalenko S., Drozdova P., Polev D., Beliavskaia A., Danilov L., Predeus A., Zhouravleva G. Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage // G3: Genes, Genomes, Genetics (Bethesda). 2021. V. 11.
  6. https://doi.org/10.1093/g3journal/jkab029
  7. Chabelskaya S., Kiktev D., Inge-Vechtomov S., Philippe M., Zhouravleva G. Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal // Mol. Genet. Genoms. 2004. V. 272. P. 297–307. https://doi.org/10.1007/s00438-004-1053-1
  8. Davey H., Guyot S. Estimation of microbial viability using flow cytometry // Curr. Protoc. Cytom. 2020. V. 93. Art. e72. https://doi.org/10.1002/cpcy.72
  9. Gietz R., Schiestl R., Willems A., Woods R. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995. V. 11. P. 355‒360. https://doi.org/10.1002/yea.320110408
  10. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history // Biol. Cell. 2003. V. 95. P. 195–209.
  11. https://doi.org/10.1016/s0248-4900(03)00035-2
  12. Kaiser C., Michaelis S., Mitchell A. Spring Harbor laboratory course manual. NY: Cold Spring Harbor Laboratory Press, 1994. 234 p.
  13. Kwolek-Mirek M., Zadrag-Tecza R. Comparison of methods used for assessing the viability and vitality of yeast cells // FEMS Yeast Res. 2014. V. 14. P. 1068–1079.
  14. https://doi.org/10.1111/1567-1364.12202
  15. Maksiutenko E., Barbitoff Y., Matveenko A., Moskalenko S., Zhouravleva G. Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes // Genes (Basel). 2021. V. 12. Art. 2019. https://doi.org/10.3390/genes12122019
  16. Merritt G., Naemi W., Mugnier P., Webb H., Tuite M., von der Haar T. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast // Nucl. Acids Res. 2010. V. 38. P. 5479–5492.
  17. https://doi.org/10.1093/nar/gkq338
  18. Moskalenko S., Chabelskaya S., Philippe M., Inge-Vechtomov S., Zhouravleva G. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae // BMC Mol. Biol. 2003. V. 4.
  19. https://doi.org/10.1186/1471-2199-4-2
  20. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA.
  21. URL: http://www.rstudio.com/
  22. Sambrook J., Fritsch E., Maniatis T. Molecular cloning: a laboratory manual // 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989. 1659 p.
  23. Valouev I., Kushnirov V., Ter-Avanesyan M. Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation // Cell Motil. Cytoskeleton. 2002. V. 52. P. 161–173. https://doi.org/10.1002/cm.10040
  24. Volkov K., Aksenova A., Soom M., Osipov K., Svitin A., Kurischko C., Shkundina I., Ter-Avanesyan M., Inge-Vechtomov S., Mironova L. Novel non-mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae // Genetics. 2002. V. 160. Р. 25‒36.
  25. https://doi.org/10.1093/genetics/160.1.25
  26. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3 // EMBO J. 1995. V. 14. P. 4065–4072.
  27. https://doi.org/.1002/j.1460-2075.1995.tb00078.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mutations in the SUP45 and SUP35 genes lead to a decrease in viability. The data of flow cytofluorometry (single cell populations) for clones carrying alleles SUP45 (panel A) or SUP35 (panel B) are presented. FSC-A is a parameter of direct light scattering by area. FL3-A::PI-A is a fluorescent detection channel (610/20 nm) that registers the intensity of the fluorescent signal (in this case, propidium iodide) by area.

Download (318KB)

Copyright (c) 2024 Russian Academy of Sciences