Microbial communities of bottom sediments of Alas Lakes of Central Yakutia as indicators of agricultural load

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alas (thermokarst) basins with lakes are unique landscapes of the cryolithozone, widespread in the territory of Central Yakutia and traditionally used by the indigenous population for household needs (as sources of water, pastures and hayfields). In addition, alases are of great climatic importance, since they are active sources of greenhouse gas emissions. Microbial communities play a key role in the transformation of buried and modern organic matter entering alas ecosystems as a result of the impact of climatic and anthropogenic factors. However, microbiological studies of such ecosystems are extremely rare. This paper characterizes the phylogenetic diversity of microbial communities in the bottom sediments of three alas lakes in Central Yakutia – Tyungyulyu, Taby and Kharyyalakh. It was found that anaerobic chemoheterotrophic prokaryotes predominate in the sediments, but at the same time a large diversity of uncultured microorganisms with unknown metabolism was revealed. It is shown that microbial communities of bottom sediments can be indicators of agricultural load experienced by lakes. Microorganisms of the methane cycle were highly represented in the lake with the lowest anthropogenic load.

Full Text

Restricted Access

About the authors

O. S. Samylina

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071

V. A. Gabyshev

Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences

Email: olga.samylina@gmail.com
Russian Federation, Yakutsk 677980

A. I. Kosyakova

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071

V. V. Kadnikov

Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences

Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071

A. V. Beletsky

Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences

Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071

N. V. Pimenov

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071

References

  1. Босиков Н. П. Эволюция аласов Центральной Якутии. Якутск: ИМЗ СО РАН, 1991. 128 с.
  2. Горохов А. Н., Федоров А. Н. Современные тенденции изменения климата в Якутии // География и природные ресурсы. 2018. № 2. С. 111–119. https://doi.org/10.21782/GIPR0206-1619-2018-2(111-119)
  3. Gorokhov A. N., Fedorov A. N. Current trends in climate change in Yakutia // Geography and Natural Resources. 2018. V. 39. № 2. P. 153‒161. https://doi.org/10.1134/S1875372818020087
  4. Десяткин Р. В. Аласные экосистемы – основа развития скотоводства в суровых природно-климатических условиях Якутии // Наука и техника в Якутии. 2021. № 2 (41). С. 13‒18. https://doi.org/10.24412/1728-516Х-2021-2-13-18
  5. Итоги Всероссийской переписи населения 2020 г. Том 1. Численность и размещение населения. 5. Численность населения городских округов, муниципальных районов, городских и сельских поселений, городских населенных пунктов, сельских населенных пунктов // Электронный ресурс: https://14.rosstat.gov.ru/folder/179476
  6. Каллистова А. Ю., Саввичев А. С., Русанов И. И., Пименов Н. В. Термокарстовые озера – экосистемы с интенсивными микробными процессами цикла метана // Микробиология. 2019. Т. 88. С. 631–644. https://doi.org/10.1134/S0026365619060041
  7. Kallistova A.Yu., Savvichev A. S., Rusanov I. I., Pimenov N. V. Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle // Microbiology (Moscow). 2019. V. 88. P. 649–661. https://doi.org/10.1134/S0026261719060043
  8. Кириллина К. С. Современные тенденции изменения климата Республики Саха (Якутия) // Ученые записки Российского государственного гидрометеорологичекого университета. 2013. № 30. С. 69‒77.
  9. Самылина О. С., Габышева О. И., Габышев В. А., Кадников В. В., Белецкий А. В., Косякова А. И., Каллистова А. Ю., Пименов Н. В. Планктонные микробные сообщества термокарстовых озер Центральной Якутии демонстрируют высокое разнообразие некультивируемых прокариот с неохарактеризованными функциями // Микробиология. 2024. Т. 93. С. 101–108. https://doi.org/10.31857/S0026365624020013
  10. Samylina O. S., Gabysheva O. I., Gabyshev V. A., Kadnikov V. V., Beletsky A. V., Kosyakova A. I., Kallistova A.Yu., Pimenov N. V. Planktonic microbial communities of thermokarst lakes of Central Yakutia demonstrate a high diversity of uncultivated prokaryotes with uncharacterized functions // Microbiology (Moscow). 2024. V. 93. P. 121–127. https://doi.org/10.1134/S0026261723603561
  11. Чербунина М. Ю., Шмелев Д. Г., Брушков А. В., Казанцев В. С., Аргунов Р. Н. Закономерности распределения метана в верхних горизонтах многолетнемерзлых пород Центральной Якутии // Вестн. Моск. ун-та. Сер. 4. Геология. 2017. № 6. С. 105‒112. https://doi.org/10.33623/0579-9406-2017-6-105-112
  12. Anantharaman K., Brown C. T., Hug L. A., Sharon I., Castelle C. J., Probst A. J., Thomas B. C., Singh A., Wilkins M. J., Karaoz U., Brodie E. L., Williams K. H., Hubbard S. S., Banfield J. F. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system // Nat. Commun. 2016. V. 7. Art. 13219. https://doi.org/10.1038/ncomms13219
  13. Brown C. T., Hug L. A., Thomas B. C., Sharon I., Castelle C. J., Singh A., Wilkins M. J., Wrighton K. C., Williams K. H., Banfield J. F. Unusual biology across a group comprising more than 15% of domain Bacteria // Nature. 2015. V. 523. P. 208‒211. https://doi.org/10.1038/nature14486
  14. Brown D. R., Bradbury J. M., Johansson K.-E. Acholeplasma // Bergey’s Manual of Systematics of Archaea and Bacteria / John Wiley & Sons, Ltd. Chichester, UK: 2015. P. 1‒13. https://doi.org/10.1002/9781118960608.gbm01256
  15. Castelle C. J., Brown C. T., Anantharaman K., Probst A. J., Huang R. H., Banfield J. F. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations // Nat. Rev. Microbiol. 2018. V. 16. P. 629–645. https://doi.org/10.1038/s41579-018-0076-2
  16. Dedysh S. N., Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 3796‒3806. https://doi.org/10.1099/ijsem.0.003062
  17. Desyatkin R. V., Desyatkin A. R. Ecosystems of alas landscapes ‒ the basis for the development of cattle breeding in the harsh natural and climatic conditions of the permafrost zone // Land. 2023. V. 12. Art. 288. https://doi.org/10.3390/land12020288
  18. Desyatkin A. R., Takakai F., Hatano R. Flood effect on CH4 emission from the alas in Central Yakutia, East Siberia // Soil Sci. Plant Nutrit. 2014. V. 60. P. 242–253. https://doi.org/10.1080/00380768.2014.883486
  19. Göker M., Oren A. Valid publication of four additional phylum names // Int. J. Syst. Evol. Microbiol. 2023. V. 73. Art. 006024. https://doi.org/10.1099/ijsem.0.006024
  20. Han Y., Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines // Front. Microbiol. 2015 V. 6. Art. 989. https://doi.org/10.3389/fmicb.2015.00989
  21. Hughes-Allen L., Bouchard F., Séjourné A., Fougeron G., Léger E. Automated identification of thermokarst lakes using machine learning in the ice-rich permafrost landscape of Central Yakutia (Eastern Siberia) // Remote Sensing. 2023. V. 15. Art. 1226. https://doi.org/10.3390/rs15051226
  22. Hughes-Allen L., Bouchard F., Laurion I., Séjourné A., Marlin C., Hatté C., Costard F., Fedorov A., Desyatkin A. Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia) // Limnol. Oceanogr. 2021. V. 66. № S1. P. S98–S116. https://doi.org/10.1002/lno.11665
  23. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fiereret N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses // ISME J. 2009. V. 3. P. 442–453. https://doi.org/10.1038/ismej.2008.127
  24. Liu Q., Song L., Zou S., Wu X., Zang S. Distribution characteristics and driving factors of the bacterial community structure in the soil profile of a discontinuous permafrost region // Forests. 2024. V. 15. Art. 1456. https://doi.org/10.3390/f15081456
  25. Martini M., Marcone C., Lee I. M., Firrao G. The Family Acholeplasmataceae (Including Phytoplasmas) // The Prokaryotes / Eds. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-642-30120-9_387
  26. McAuliffe C.C. GC determination of solutes by multiple phase equilibrium // Chem. Technol. 1971. V. 1. P. 46–51.
  27. Navarrete A. A., Kuramae E. E., de Hollander M., Pijl A. S., van Veen J. A., Tsai S. M. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils // FEMS Microbiol. Ecol. 2013. V. 83. P. 607‒621. https://doi.org/10.1111/1574-6941.12018
  28. Oren A., Göker M. Candidatus List. Lists of names of prokaryotic Candidatus phyla // Int. J. Syst. Evol. Microbiol. 2023. V. 73. Art. 005821. https://doi.org/10.1099/ijsem.0.005821
  29. Oren A., Göker M. Validation List no. 215. Valid publication of new names and new combinations effectively published outside the IJSEM // Int. J. Syst. Evol. Microbiol. 2024. V. 74. https://doi.org/10.1099/ijsem.0.006173
  30. Ormerod K. L., Wood D. L.A., Lachner N., Gellatly S. L., Daly J. N., Parsons J. D., Dal’Molin C.G.O., Palfreyman R. W., Nielsen L. K., Cooper M. A., Morrison M., Hansbro P. M., Hugenholtz P. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals // Microbiome. 2016. V. 4. Art. 36. https://doi.org/10.1186/s40168-016-0181-2
  31. Prosser J. I., Head I. M., Stein L. Y. The Family Nitrosomonadaceae. // The Prokaryotes / Eds. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-642-30197-1_372
  32. Tian R., Ning D., He Z., Zhang P., Spencer S. J., Gao S., Shi W., Wu L., Zhang Y., Yang Y., Adams B. G., Rocha A. M., Detienne B. L., Lowe K. A., Joyner D. C., Klingeman D. M., Arkin A. P., Fields M. W., Hazen T. C., Stahl D. A., Alm E. J., Zhou J. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity // Microbiome. 2020. V. 8. Art. 51. https://doi.org/10.1186/s40168-020-00825-w
  33. Zhang S., Wang Z., Yi L., Ye X., Suo F., Chen X., Lu X. Bacterial response to the combined pollution of benzo[a]pyrene and decabromodiphenyl ether in soil under flooding anaerobic condition // J. Hazard Mater. 2024. V. 465. Art. 133137. https://doi.org/10.1016/j.jhazmat.2023.133137

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geographic location (a), satellite images (b–d) and general view (e–g) of lakes Kharyyalakh (b, d), Taby (c, e) and Tyungyulyu (d, g). White arrows indicate sampling points.

Download (932KB)
3. Fig. 2. Number of common and unique OTUs in bottom sediment communities of three alas lakes in Central Yakutia (Venn diagram). When constructing the diagram, data arrays of all bottom sediment horizons for each lake were combined; the combined arrays were compared.

Download (103KB)
4. Fig. 3. Diversity of microbial communities of bottom sediments of three alas lakes of Central Yakutia at the phylum level. Phylums with a relative abundance exceeding 0.5% are presented. Phylums with a relative abundance below 0.5% are combined into “other Archaea” and “other Bacteria”.

Download (293KB)

Copyright (c) 2025 Russian Academy of Sciences