Microbial communities of bottom sediments of Alas Lakes of Central Yakutia as indicators of agricultural load
- Authors: Samylina O.S.1, Gabyshev V.A.2, Kosyakova A.I.1, Kadnikov V.V.3, Beletsky A.V.3, Pimenov N.V.1
-
Affiliations:
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences
- Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences
- Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences
- Issue: Vol 94, No 1 (2025)
- Pages: 81-89
- Section: EXPERIMENTAL ARTICLES
- URL: https://edgccjournal.org/0026-3656/article/view/682038
- DOI: https://doi.org/10.31857/S0026365625010063
- ID: 682038
Cite item
Abstract
Alas (thermokarst) basins with lakes are unique landscapes of the cryolithozone, widespread in the territory of Central Yakutia and traditionally used by the indigenous population for household needs (as sources of water, pastures and hayfields). In addition, alases are of great climatic importance, since they are active sources of greenhouse gas emissions. Microbial communities play a key role in the transformation of buried and modern organic matter entering alas ecosystems as a result of the impact of climatic and anthropogenic factors. However, microbiological studies of such ecosystems are extremely rare. This paper characterizes the phylogenetic diversity of microbial communities in the bottom sediments of three alas lakes in Central Yakutia – Tyungyulyu, Taby and Kharyyalakh. It was found that anaerobic chemoheterotrophic prokaryotes predominate in the sediments, but at the same time a large diversity of uncultured microorganisms with unknown metabolism was revealed. It is shown that microbial communities of bottom sediments can be indicators of agricultural load experienced by lakes. Microorganisms of the methane cycle were highly represented in the lake with the lowest anthropogenic load.
Full Text

About the authors
O. S. Samylina
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences
Author for correspondence.
Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071
V. A. Gabyshev
Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences
Email: olga.samylina@gmail.com
Russian Federation, Yakutsk 677980
A. I. Kosyakova
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences
Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071
V. V. Kadnikov
Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences
Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071
A. V. Beletsky
Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences
Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071
N. V. Pimenov
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences
Email: olga.samylina@gmail.com
Russian Federation, Moscow, 119071
References
- Босиков Н. П. Эволюция аласов Центральной Якутии. Якутск: ИМЗ СО РАН, 1991. 128 с.
- Горохов А. Н., Федоров А. Н. Современные тенденции изменения климата в Якутии // География и природные ресурсы. 2018. № 2. С. 111–119. https://doi.org/10.21782/GIPR0206-1619-2018-2(111-119)
- Gorokhov A. N., Fedorov A. N. Current trends in climate change in Yakutia // Geography and Natural Resources. 2018. V. 39. № 2. P. 153‒161. https://doi.org/10.1134/S1875372818020087
- Десяткин Р. В. Аласные экосистемы – основа развития скотоводства в суровых природно-климатических условиях Якутии // Наука и техника в Якутии. 2021. № 2 (41). С. 13‒18. https://doi.org/10.24412/1728-516Х-2021-2-13-18
- Итоги Всероссийской переписи населения 2020 г. Том 1. Численность и размещение населения. 5. Численность населения городских округов, муниципальных районов, городских и сельских поселений, городских населенных пунктов, сельских населенных пунктов // Электронный ресурс: https://14.rosstat.gov.ru/folder/179476
- Каллистова А. Ю., Саввичев А. С., Русанов И. И., Пименов Н. В. Термокарстовые озера – экосистемы с интенсивными микробными процессами цикла метана // Микробиология. 2019. Т. 88. С. 631–644. https://doi.org/10.1134/S0026365619060041
- Kallistova A.Yu., Savvichev A. S., Rusanov I. I., Pimenov N. V. Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle // Microbiology (Moscow). 2019. V. 88. P. 649–661. https://doi.org/10.1134/S0026261719060043
- Кириллина К. С. Современные тенденции изменения климата Республики Саха (Якутия) // Ученые записки Российского государственного гидрометеорологичекого университета. 2013. № 30. С. 69‒77.
- Самылина О. С., Габышева О. И., Габышев В. А., Кадников В. В., Белецкий А. В., Косякова А. И., Каллистова А. Ю., Пименов Н. В. Планктонные микробные сообщества термокарстовых озер Центральной Якутии демонстрируют высокое разнообразие некультивируемых прокариот с неохарактеризованными функциями // Микробиология. 2024. Т. 93. С. 101–108. https://doi.org/10.31857/S0026365624020013
- Samylina O. S., Gabysheva O. I., Gabyshev V. A., Kadnikov V. V., Beletsky A. V., Kosyakova A. I., Kallistova A.Yu., Pimenov N. V. Planktonic microbial communities of thermokarst lakes of Central Yakutia demonstrate a high diversity of uncultivated prokaryotes with uncharacterized functions // Microbiology (Moscow). 2024. V. 93. P. 121–127. https://doi.org/10.1134/S0026261723603561
- Чербунина М. Ю., Шмелев Д. Г., Брушков А. В., Казанцев В. С., Аргунов Р. Н. Закономерности распределения метана в верхних горизонтах многолетнемерзлых пород Центральной Якутии // Вестн. Моск. ун-та. Сер. 4. Геология. 2017. № 6. С. 105‒112. https://doi.org/10.33623/0579-9406-2017-6-105-112
- Anantharaman K., Brown C. T., Hug L. A., Sharon I., Castelle C. J., Probst A. J., Thomas B. C., Singh A., Wilkins M. J., Karaoz U., Brodie E. L., Williams K. H., Hubbard S. S., Banfield J. F. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system // Nat. Commun. 2016. V. 7. Art. 13219. https://doi.org/10.1038/ncomms13219
- Brown C. T., Hug L. A., Thomas B. C., Sharon I., Castelle C. J., Singh A., Wilkins M. J., Wrighton K. C., Williams K. H., Banfield J. F. Unusual biology across a group comprising more than 15% of domain Bacteria // Nature. 2015. V. 523. P. 208‒211. https://doi.org/10.1038/nature14486
- Brown D. R., Bradbury J. M., Johansson K.-E. Acholeplasma // Bergey’s Manual of Systematics of Archaea and Bacteria / John Wiley & Sons, Ltd. Chichester, UK: 2015. P. 1‒13. https://doi.org/10.1002/9781118960608.gbm01256
- Castelle C. J., Brown C. T., Anantharaman K., Probst A. J., Huang R. H., Banfield J. F. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations // Nat. Rev. Microbiol. 2018. V. 16. P. 629–645. https://doi.org/10.1038/s41579-018-0076-2
- Dedysh S. N., Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 3796‒3806. https://doi.org/10.1099/ijsem.0.003062
- Desyatkin R. V., Desyatkin A. R. Ecosystems of alas landscapes ‒ the basis for the development of cattle breeding in the harsh natural and climatic conditions of the permafrost zone // Land. 2023. V. 12. Art. 288. https://doi.org/10.3390/land12020288
- Desyatkin A. R., Takakai F., Hatano R. Flood effect on CH4 emission from the alas in Central Yakutia, East Siberia // Soil Sci. Plant Nutrit. 2014. V. 60. P. 242–253. https://doi.org/10.1080/00380768.2014.883486
- Göker M., Oren A. Valid publication of four additional phylum names // Int. J. Syst. Evol. Microbiol. 2023. V. 73. Art. 006024. https://doi.org/10.1099/ijsem.0.006024
- Han Y., Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines // Front. Microbiol. 2015 V. 6. Art. 989. https://doi.org/10.3389/fmicb.2015.00989
- Hughes-Allen L., Bouchard F., Séjourné A., Fougeron G., Léger E. Automated identification of thermokarst lakes using machine learning in the ice-rich permafrost landscape of Central Yakutia (Eastern Siberia) // Remote Sensing. 2023. V. 15. Art. 1226. https://doi.org/10.3390/rs15051226
- Hughes-Allen L., Bouchard F., Laurion I., Séjourné A., Marlin C., Hatté C., Costard F., Fedorov A., Desyatkin A. Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia) // Limnol. Oceanogr. 2021. V. 66. № S1. P. S98–S116. https://doi.org/10.1002/lno.11665
- Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fiereret N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses // ISME J. 2009. V. 3. P. 442–453. https://doi.org/10.1038/ismej.2008.127
- Liu Q., Song L., Zou S., Wu X., Zang S. Distribution characteristics and driving factors of the bacterial community structure in the soil profile of a discontinuous permafrost region // Forests. 2024. V. 15. Art. 1456. https://doi.org/10.3390/f15081456
- Martini M., Marcone C., Lee I. M., Firrao G. The Family Acholeplasmataceae (Including Phytoplasmas) // The Prokaryotes / Eds. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-642-30120-9_387
- McAuliffe C.C. GC determination of solutes by multiple phase equilibrium // Chem. Technol. 1971. V. 1. P. 46–51.
- Navarrete A. A., Kuramae E. E., de Hollander M., Pijl A. S., van Veen J. A., Tsai S. M. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils // FEMS Microbiol. Ecol. 2013. V. 83. P. 607‒621. https://doi.org/10.1111/1574-6941.12018
- Oren A., Göker M. Candidatus List. Lists of names of prokaryotic Candidatus phyla // Int. J. Syst. Evol. Microbiol. 2023. V. 73. Art. 005821. https://doi.org/10.1099/ijsem.0.005821
- Oren A., Göker M. Validation List no. 215. Valid publication of new names and new combinations effectively published outside the IJSEM // Int. J. Syst. Evol. Microbiol. 2024. V. 74. https://doi.org/10.1099/ijsem.0.006173
- Ormerod K. L., Wood D. L.A., Lachner N., Gellatly S. L., Daly J. N., Parsons J. D., Dal’Molin C.G.O., Palfreyman R. W., Nielsen L. K., Cooper M. A., Morrison M., Hansbro P. M., Hugenholtz P. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals // Microbiome. 2016. V. 4. Art. 36. https://doi.org/10.1186/s40168-016-0181-2
- Prosser J. I., Head I. M., Stein L. Y. The Family Nitrosomonadaceae. // The Prokaryotes / Eds. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-642-30197-1_372
- Tian R., Ning D., He Z., Zhang P., Spencer S. J., Gao S., Shi W., Wu L., Zhang Y., Yang Y., Adams B. G., Rocha A. M., Detienne B. L., Lowe K. A., Joyner D. C., Klingeman D. M., Arkin A. P., Fields M. W., Hazen T. C., Stahl D. A., Alm E. J., Zhou J. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity // Microbiome. 2020. V. 8. Art. 51. https://doi.org/10.1186/s40168-020-00825-w
- Zhang S., Wang Z., Yi L., Ye X., Suo F., Chen X., Lu X. Bacterial response to the combined pollution of benzo[a]pyrene and decabromodiphenyl ether in soil under flooding anaerobic condition // J. Hazard Mater. 2024. V. 465. Art. 133137. https://doi.org/10.1016/j.jhazmat.2023.133137
Supplementary files
