Development of multiplex real-time RT-PCR to determine the expression level of Toll-like receptor genes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Immune response gene expression analysis is an important task in studies of interactions between host and an infectious agent. Many approaches to this task have been developed, but despite significant progress, the problem of selecting a single standard for data normalization remain unsolved. In the present work, HPRT1, SDHA, GAPDH and TBP were selected as candidates for reference genes with stable expression and a system for their analysis based on multiplex real-time RT-PCR was developed. The results of calculations using geNorm and BestKeeper algorithms allowed to create a stable index based on two genes — HPRT1 and SDHA. It was used for normalization of expression level of target genes of Toll-like receptors: TLR1, TLR2, TLR4, TLR6 and TLR8. The obtained expression values of Toll-like receptor genes in the sample of conditionally healthy individuals were characterized by high stability and positive mutual correlation (except TLR6), which may indicate common mechanisms of expression regulation and also confirms the possibility of using the developed multiplex system to analyze the expression of immune response genes.

Full Text

Restricted Access

About the authors

S. A. Salamaikina

Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being; Moscow Institute of Physics and Technology, Dolgoprudny

Author for correspondence.
Email: salamaykina@cmd.su
Russian Federation, Moscow; Dolgoprudny, Moscow Region

V. I. Korchagin

Moscow Institute of Physics and Technology

Email: salamaykina@cmd.su
Russian Federation, Dolgoprudny, Moscow Region

K. O. Mironov

Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being

Email: salamaykina@cmd.su
Russian Federation, Moscow

References

  1. Jin M.S., Kim S.E., Heo J.Y., Lee M.E., Kim H.M., Paik S.-G., Lee J.-O. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a triacylated lipopeptide. Cell. 130(6), 1071–1082.
  2. Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Akira S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 11(4), 443–451.
  3. Саламайкина С.A., Миронов K.O. (2023) Однонуклеотидные полиморфизмы генов Толл-подобных рецепторов, ассоциированные с риском развития туберкулеза и другими заболеваниями нижних дыхательных путей. Эпидемиология и инфекционные болезни. Актуальные вопросы. 4, 57–61.
  4. Zielniok K., Burdzinska A., Murcia Pienkowski V., Koppolu A., Rydzanicz M., Zagozdzon R., Paczek L. (2021) Gene expression profile of human mesenchymal stromal cells exposed to hypoxic and pseudohypoxic preconditioning-an analysis by RNA sequencing. Int. J. Mol. Sci. 22(15), 8160.
  5. Bednarczyk M., Muc-Wierzgoń M., Walkiewicz K., Kokot T., Fatyga E., Mazurek U. (2017) Profile of gene expression of TLR-signaling pathways in colorectal cancer tissues. Int. J. Immunopathol. Pharmacol. 30(3), 322–326.
  6. Bliss T.W., Dohms J.E., Emara M.G., Keeler C.L. (2005) Gene expression profiling of avian macrophage activation. Vet. Immunol. Immunopathol. 105(3–4), 289–299.
  7. Otto E., Köhli P., Appelt J., Menzel S., Fuchs M., Bahn A., Jahn D. (2020) Validation of reference genes for expression analysis in a murine trauma model combining traumatic brain injury and femoral fracture. Sci. Rep. 10(1), 15057.
  8. Herath S., Dai H., Erlich J., Au A.Y., Taylor K., Succar L., Endre Z.H. (2020) Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease. PLoS One. 15(5), e0233109.
  9. Ostheim P., Alemu S.W., Tichý A., Sirak I., Davidkova M., Stastna M.M., Abend M. (2022) Examining potential confounding factors in gene expression analysis of human saliva and identifying potential housekeeping genes. Sci. Rep. 12(1), 2312.
  10. Аксельрод Э.В., Миронов K.O., Дунаева E.A., Шипулин Г.A. (2016) Сравнение трех молекулярно-генетических методик для определения основных мутаций в гене HFE, связанных с развитием наследственного гемохроматоза. Клиническая лабораторная диагностика. 61(5), 316–320.
  11. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13(1), 134.
  12. Wickham H. (2009) Ggplot2: elegant graphics for data analysis. New York: Springer.
  13. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), research0034.1.
  14. Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper — excel-based tool using pair-wise correlations. Biotechnol. Lett. 26(6), 509–515.
  15. Huggett J., Dheda K., Bustin S., Zumla A. (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immunity. 6(4), 279–284.
  16. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Wittwer C.T. (2009) The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55(4), 611–622.
  17. Thomas K.C., Zheng X.F., Garces Suarez F., Raftery J.M., Quinlan K.G.R., Yang N., Houweling P.J. (2014) Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS- L One. 9(2), e88653.
  18. Dheda K., Huggett J.F., Bustin S.A., Johnson M.A., Rook G., Zumla A. (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques. 37(1), 112–119.
  19. Lyng M.B., Laenkholm A.-V., Pallisgaard N., Ditzel H.J. (2008) Identification of genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer. 8, 20.
  20. Suzuki T., Higgins P.J., Crawford D.R. (2000) Control selection for RNA quantitation. BioTechniques. 29(2), 332–337.
  21. Fu Y., Yang J., Fan S., Zhao S., Du R., Shah S.M.A., Yang Y. (2020) Selection and validation of optimal endogenous reference genes for analysis of quantitative PCR in four tissues pathologically associated with Kidney-yang deficiency syndrome following influenza A infection. Exp. Ther. Med. 20(6), 244.
  22. Ohl F., Jung M., Radonić A., Sachs M., Loening S.A., Jung K. (2006) Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J. Urol. 175(5), 1915–1920.
  23. Song R., He S., Wu Y., Chen W., Song J., Zhu Y., Tan S. (2023) Validation of reference genes for the normalization of the RT-qPCR in peripheral blood mononuclear cells of septic patients. Heliyon. 9(4), e15269.
  24. Huazhang A., Yizhi Y., Minghui Zh., Hongmei X., Runzi Q., Xiaoyi Y., Shuxun L., Wenya W., Zhenghong G., Jun G., Zhihai Q., Xuetao C. (2002) Involvement of ERK, p38 and NF-κB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology. 106, 38‒45.
  25. Sidletskaya K., Vitkina T., Denisenko Y. (2020) The role of Toll-like receptors 2 and 4 in the pathogenesis of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 1481–1493.
  26. Tian Y., Huang B., Li J., Tian X., Zeng X. (2022) Identification of the association between Toll-like receptors and T-cell activation in Takayasu’s arteritis. Front. Immunol. 12, 792901.
  27. Lu C.-C., Kuo H.-C., Wang F.-S., Jou M.-H., Lee K.-C., Chuang J.-H. (2015) Upregulation of TLRs and IL-6 as a marker in human colorectal cancer. Int. J. Mol. Sci. 16(1), 159–177.
  28. Junjie Mastera Y., Haihua Masterb H., Chaoqun Masterc Y., Maofen Masterd J., Dongxiao Mastera D. (2023) Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma. Medicine. 102(38), e34954.
  29. Shi S., Xu C., Fang X., Zhang Y., Li H., Wen W., Yang G. (2020) Expression profile of Toll-like receptors in human breast cancer. Mol. Med. Rep. 21, 786–794.
  30. Xiong Z., Bingqian G., Qiang L., Mo Zengnan M. (2022) Toll-Like receptors serve as biomarkers for early diagnosis and prognosis assessment of kidney renal clear cell carcinoma by influencing the immune microenvironment: comprehensive bioinformatics analysis combined with experimental validation. Front. Mol. Bioscie. 9, 832238.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of arrangement of oligonucleotides for detection of target regions and determination of gene expression level. a — Annealing of one of the primers in two exons; b — fragment size exceeds possible processivity of the Taq polymerase used; I — DNA sequence; II — cDNA sequence.

Download (642KB)
3. Fig. 2. Schematic diagram of experiments to determine expression levels in two multiplexes.

Download (675KB)
4. Fig. 3. Distribution of GM [Ct] values ​​of housekeeping genes.

Download (185KB)
5. Fig. 4. Pairwise correlation diagram of GM [Ct] values ​​of housekeeping genes. Statistically insignificant results are marked.

Download (138KB)
6. Fig. 5. Distribution of relative expression values ​​(Cq) of TLR genes.

Download (169KB)
7. Fig. 6. Pairwise correlation diagram of relative expression values ​​(Cq) of TLR genes.

Download (158KB)

Copyright (c) 2025 Russian Academy of Sciences