Changes in Raman spectra from the surface of titanium foils under their fluorination
- Authors: Sergeev P.B.1, Melnik N.N.1
-
Affiliations:
- Lebedev Physical Institute of the Russian Academy of Sciences
- Issue: Vol 88, No 12 (2024)
- Pages: 1926-1931
- Section: Nanooptics, photonics and coherent spectroscopy
- URL: https://edgccjournal.org/0367-6765/article/view/682292
- DOI: https://doi.org/10.31857/S0367676524120138
- EDN: https://elibrary.ru/EWEOBY
- ID: 682292
Cite item
Abstract
The transformation of Raman spectra from titanium foils during their fluorination in gas mixtures was experimentally studied. It was found that fluorination leads to a strong increase in the intensity of scattering bands from the initial components of the nanocoating of titanium foils. A new strong band also appears at 905±5 см-1 and a wide continuum with a maximum of ≈1700 см-1, increasing during fluorination.
Full Text

About the authors
P. B. Sergeev
Lebedev Physical Institute of the Russian Academy of Sciences
Author for correspondence.
Email: sergeevpb@lebedev.ru
Branch in Troitsk
Russian Federation, MoscowN. N. Melnik
Lebedev Physical Institute of the Russian Academy of Sciences
Email: sergeevpb@lebedev.ru
Branch in Troitsk
Russian Federation, MoscowReferences
- Хохлов В.А., Жаховский В.В., Иногамов Н.А. и др. // Письма в ЖЭТФ. 2022. Т. 115. № 9. С. 576, Khokhlov V.A., Zhakhovsky V.V., Inogamov N.A. et al. // JETP Lett. 2022. V. 115. No. 9. P. 523.
- Воробьев В.Л., Гильмутдинов Ф.З., Сюгаев А.В. и др. // Физ. металл. и металловед. 2020. Т. 121. № 5. С. 509, Vorob’ev V.L., Gil’mutdinov F.Z., Syugaev A.V. et al. // Phys. Metals Metallogr. V. 121. No. 5. P. 460.
- Комаров Д.В., Коновалов С.В., Жуков Д.В. и др. // Ползуновский вестн. 2022. № 3. С. 204.
- Тимченко П.Е., Фролов О.О., Тимченко Е.В. и др. // Опт. и спектроск. 2023. Т. 131. № 6. С. 728, Timchenko P.E., Frolov O.O., Timchenko E.V. et al. // Opt. Spectrosc. 2023. V. 131. No. 6. P. 684.
- Kiselyova E.S., Sypchenko V.S., Nikitenkov N.N. et al. // Lett. Materials. 2017. V. 7. No. 2. P. 117.
- Lohse B.H., Calka A., Wexler D. // J. Appl. Phys. 2005. V. 97. P. 114912.
- Mahalingam S., Edirisinghe M.J. // J. Phys. D. Appl. Phys. 2008. V. 41. No. 21. Art. No. 215406.
- Sarycheva A., Gogotsi Y. // Chem. Mater. 2020. V. 32. P. 3480.
- Бронников К.А., Гладких С.А., Окотруб К.А. и др. // Квант. электрон. 2022. Т. 52. № 11. С. 1042.
- Popova A.D., Sheveyko A.N., Kuptsov K.A. et al. // ACS Appl. Mater. Interfaces. 2023. V. 15. No. 31. P. 37274.
- Жирухин Д.А., Капустин Ю.И., Ваграмян Т.А. // Успехи в хим. и химич. технол. 2021. Т. 35. № 8. С. 108.
- Hanaor D.A.H., Sorrell C.C. // J. Mater Sci. 2011. V. 46. P. 855.
- Hardcastle F.D. // JAAS. 2011. V. 65. Art. No. 9.
- Zanatta A.R. // AIP Advances. 2017. V. 7. Art. No. 075201.
- Surmacki J., Wronski P., Szadkowska-Nicze M., Abramczyk H. // Chem. Phys. Lett. 2013. V. 566. P. 54.
- Blanco-Pinzon C., Liu Z., Voisey K. et al. // Corros. Sci. 2005. V. 47. P. 1251.
- Sergeev P.B. // J. Russ. Laser Res. 1993. V. 14. No. 4. P. 237.
- Бодакин Л.В., Гусаков А.И., Комаров О.В. и др. // ЖТФ. 2016. Т. 86. № 9. С. 122, Bodakin L.V., Gusakov A.I., Komarov O.V. et al. // Tech. Phys. 2016. V. 61. No. 9. P. 1404.
- Egorov I., Smolyanskiy E., Poloskov A., Serebrennikov M. // Vacuum. 2022. V. 199. Art. No. 110921.
- Сергеев П.Б., Морозов Н.В. // Опт. и спектроск. 2019. Т. 126. № 3. С. 280, Sergeev P.B., Morozov N.V. // Opt. Spectrosc. 2019. V. 126. No. 3. P. 200.
- Сергеев П.Б., Ковалец Н.П., Кожина Е.П., Бедин С.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1819, Sergeev P.B., Kovalets N.P., Kozhina E.P., Bedin S.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1890.
- Сергеев П.Б., Сергеев А.П., Зворыкин В.Д. // Квант. электрон. 2007. Т. 37. № 8. С. 706, Sergeev P.B., Sergeev A.P., Zvorykin V.D. // Quantum. Electron. 2007. V. 37. No. 8. P. 706.
- Cheng Y.H., Tay B.K., Lau S.P. et al. // J. Appl. Phys. 2002. V. 92. No. 4. P. 1845.
- Balachandran U., Eror N.G. // J. Solid State Chem. 1982. V. 42. P. 276.
- Pawar T.J., Contreras Lуpez D., Olivares Romero J.L. et al. // J. Mater Sci. 2023. V. 58. P. 6887.
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Raman spectra of pure titanium foil (1) and foil after irradiation in air by an electron beam from an ELA installation with a dose of 1 GGy (2).
Download (167KB)
3.
Fig. 2. Raman spectra of TiN and TiO2 powders with particle sizes of about 1 μm, respectively, before (1 and 3) and after (2 and 4) fluorination for 29 days in an Ar/F2 gas mixture at 1 atm with a fluorine content of 30 Torr.
Download (185KB)
4.
Fig. 3. Raman spectra: the original Ti foil after 5 days of fluorination (1), foil with preliminary irradiation with EP with a dose of 1 GGy and fluorination for 29 days (2), the same foil that worked in KrF-EPL (3 and 4, 3 was recorded on a device with an exciting laser of 532 nm [21], and 4—785 nm), Ti foil in the region of the anatase microcrystal, etched for 1 day (5).
Download (222KB)
5.
Fig. 4. Raman spectra of pure Ti foil in the region of minimal etching (1), different areas of pure foil after 24-hour etching (2 and 3), the same foil after 5 days of etching in an Ar/F2 gas mixture (1 atm, 40 Torr F2) (4).
Download (249KB)
