Numerical calculation of electric field enhancement in neutron traps with rough walls coated with superfluid helium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A film of liquid helium on the surface of material traps for ultra-cold neutrons protects the neutrons from being absorbed by the trap walls. By using surface roughness and an electrostatic field, it is possible to maintain a helium film of sufficient thickness throughout the height of the trap. Our study includes a numerical calculation of the field distribution near the tip of various forms of such wall roughness of the trap and the discussion how this field helps to hold the helium film.

Texto integral

Acesso é fechado

Sobre autores

V. Kochev

National University of Science and Technology «MISIS»

Email: grigorev@itp.ac.ru
Rússia, Moscow

T. Mogilyuk

National Research Centre «Kurchatov Institute»

Email: grigorev@itp.ac.ru
Rússia, Moscow

S. Kostenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: grigorev@itp.ac.ru
Rússia, Chernogolovka

P. Grigoriev

National University of Science and Technology «MISIS»; L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: grigorev@itp.ac.ru
Rússia, Moscow; Chernogolovka

Bibliografia

  1. Abele H. // Progr. Part. Nucl. Phys. 2008. V. 60. No. 1. P. 1.
  2. Ramsey-Musolf M.J., Su S. // Phys. Reports. 2008. V. 456. No. 1. P. 1.
  3. Dubbers D., Schmidt M.G. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1111.
  4. Wietfeldt F.E., Greene G.L. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1173.
  5. Gonzalez-Alonso M., Naviliat-Cuncic O., Severijns N. // Progr. Part. Nucl. Phys. 2019. V. 104. P. 165.
  6. Liu J., Mendenhall M.P., Holley A.T. et al. // Phys. Rev. Lett. 2010. V. 105. No. 18. Art. No. 181803.
  7. Märkisch B., Mest H., Saul H. et al. // Phys. Rev. Lett. 2019. V. 122. No. 24. Art. No. 242501.
  8. Sun X., Adamek E., Allgeier B. et al. // Phys. Rev. C. 2020. V. 101. No. 3. Art. No. 035503.
  9. Serebrov A.P., Varlamov V.E., Kharitonov A.G. et al. // Phys. Rev. C. 2008. V. 78. No. 3. Art. No. 035505.
  10. Arzumanov S., Bondarenko L., Chernyavsky S. et al. // Phys. Lett. B. 2015. V. 745. Art. No. 79.
  11. Cеребров А.П., Коломенский Е.А., Фомин А.К. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 10. С. 599; Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // JETP Lett. 2017. V. 106. No. 10. P. 623.
  12. Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // Phys. Rev. C. 2018. V. 97. No. 5. Art. No. 055503.
  13. Pattie R. ., Callahan N.B., Cude-Woods C. et al. // EPJ Web Conf. 2019. V. 219. Art. No. 03004.
  14. Huffman P.R., Brome C.R., Butterworth J.S. et al. // Nature. 2000. V. 403. No. 6765. P. 62.
  15. Leung K.K.H., Geltenbort P., Ivanov S. et al. // Phys. Rev. C. 2016. V. 94. No. 4. Art. No. 045502.
  16. Steyerl A., Leung K.K.H., Kaufman C. et al. // Phys. Rev. C. 2017. V. 95. No. 3. Art. No. 035502.
  17. Ezhov V.F., Andreev A.Z., Bazarov B.A. et al. // JETP Lett. 2018. V. 107. No. 11. P. 671.
  18. Pattie R.W., Callahan N.B., Cude-Woods C. et al. // Science. 2018. V. 360. No. 6389. P. 627.
  19. Gonzalez F.M., Fries E.M., Cude-Woods C. et al. // Phys. Rev. Lett. 2021. V. 127. No. 16. Art. No. 162501.
  20. Nico J.S., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. C. 2005. V. 71. No. 5. Art. No. 055502.
  21. Yue A.T., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. Lett. 2013. V. 111. No. 22. Art. No. 222501.
  22. Hirota K., Ichikawa G., Ieki S. // Progr. Theor. Exp. Phys. 2020. V. 2020. No. 12. Art. No. 123C02.
  23. Grigoriev P.D., Dyugaev A.M. // Phys. Rev. C. 2021. V. 104. No. 5. Art. No. 055501.
  24. Григорьев П.Д., Дюгаев А.М., Могилюк Т.И., Григорьев А.Д. // Письма в ЖЭТФ. 2021. Т. 114. № 8. С. 560; Grigoriev P.D., Dyugaev A.M., Mogilyuk T.I., Grigoriev A.D. // JETP Lett. 2021. V. 114. No. 8. P. 493.
  25. Grigoriev P.D., Sadovnikov A.V., Kochev V.D., Dyugaev A.M. // Phys. Rev. C. 2023. V. 108. No. 2. Art. No. 025501.
  26. Golub R., Jewell C., Ageron P. et al. // Z. Phys. B. Cond. Matter. 1983. V. 51. No. 3. P. 187.
  27. Bokun R.C. // Sov. J. Nucl. Phys. 1984. V. 40. No. 1. P. 287.
  28. Aлфименков В.П., Игнатович В.К., Межов-Деглин Л.П. и др. // Препринт ОИЯИ. № 3-2009-197. Дубна, 2009.
  29. Aлексеев И.Е., Белов С.Е., Ершов К.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. С. 1315; Alekseev I.E., Belov S.E., Ershov K.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1088.
  30. Григорьев С.В., Коваленко Н.А., Павлов К.А. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 11. С. 1526; Grigoriev S.V., Kovalenko N.A., Pavlov K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1561.
  31. Grigoriev P.D., Zimmer O., Grigoriev A.D., Ziman T. // Phys. Rev. C. 2016. V. 94. No. 2. Art. No. 025504.
  32. Florkowska B., Wlodek R. // IEEE Trans. Electr. Insul. 1993. V. 28. No. 6. P. 932.
  33. Arndt D., Bangerth W., Davydov D. et al. // J. Comput. Math. Appl. 2021. V. 81. P. 407.
  34. Geuzaine C., Remacle J.F. // Int. J. Numer. Meth. Eng. 2009. V. 79. No. 11. P. 1309.
  35. Marchetti S., Rozzi T. // IEEE Trans. Antennas Propag. 1990. V. 38. No. 9. P. 1333.
  36. Ito T.M., Ramsey J.C., Yao W. et al. // Rev. Sci. Instrum. 2016. V. 87. No. 4. Art. No. 045113.
  37. Bourgin Y., Jourlin Y., Parriaux O. et al. // Opt. Express. 2010. V. 18. No. 10. P. 10557.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Calculation grid of finite elements for pyramids of size 𝑙R = ℎR = 1 μm. Distribution of electric field amplification factor is shown in color.

Baixar (40KB)
3. Fig. 2. Electric field amplification near the roughness tip of the trap wall.

Baixar (12KB)
4. Fig. 3. Curves from Fig. 2 in double logarithmic scale.

Baixar (11KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024