Barrier Layers Based on Refractory Metals in Contacts of High Temperature Thermoelements

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An electrochemical method is proposed for forming contacts to high-temperature thermoelements with barrier layers based on refractory metal alloys. The contacts are intended for thermoelements with operating temperatures of up to 900 K. The barrier layers had a specific resistance of no more than 15.3 × 10–8 Ohm × m, and a specific contact resistance of no more than 1.5 × 10–9 Ohm m2. The best results were obtained for barrier layers based on Mo–Ni alloy with a Mo content of 36.5 wt. %. Ag films obtained by electrochemical deposition were used as a commutation layer in the contacts. It has been established that the contacts are thermally stable at the limiting operating temperatures of thermoelements and have an adhesive strength of at least 10.3 MPa.

Full Text

Restricted Access

About the authors

E. P. Korchagin

National Research University of Electronic Technology

Author for correspondence.
Email: eg.ad2013@yandex.ru
Russian Federation, Moscow

Yu. I. Shtern

National Research University of Electronic Technology

Email: eg.ad2013@yandex.ru
Russian Federation, Moscow

I. N. Petukhov

National Research University of Electronic Technology

Email: eg.ad2013@yandex.ru
Russian Federation, Moscow

M. Yu. Shtern

National Research University of Electronic Technology

Email: eg.ad2013@yandex.ru
Russian Federation, Moscow

M. S. Rogachev

National Research University of Electronic Technology

Email: rmaks1988@yahoo.com
Russian Federation, Moscow

R. M. Ryazanov

National Research University of Electronic Technology; Technological Centre Scientific-Manufacturing Complex

Email: eg.ad2013@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Jaldurgam, F. F., Ahmad, Z., and Touati, F., Synthesis and performance of large-scale cost-effective environment-friendly nanostructured thermoelectric materials, Nanomaterials, 2021, vol. 11, no. 5, ID1091, p. 1.
  2. Liu, Z. and Mori, T., Nanostructured bulk thermoelectric materials for energy harvesting, in System-Materials Nanoarchitectonics, Wakayama, Y. and Ariga, K. (eds), Tokyo: Springer, 2022, p. 199–231. https://doi.org/10.1007/978-4-431-56912-1_13
  3. Okhay, O. and Tkach, A., Metal Oxide Based Thermoelectric Materials, In Optical Properties of Metal Oxide Nanostructures, Kumar, V., Ayoub, I., Sharma, V., Swart, H.C. Eds, Singapore: Springer 2023, vol. 26, p. 399–430. https://doi.org/10.1007/978-981-99-5640-1_13
  4. Zhu, L., Li, H., Chen, S., Tian, X., Kang, X., Jiang, X., and Qiu, S., Optimization analysis of a segmented thermoelectric generator based on genetic algorithm, Renewable Energy, 2020, vol. 156, p. 710. https://doi.org/10.1016/j.renene.2020.04.120
  5. Штерн, М.Ю. Многосекционные термоэлементы, преимущества и проблемы их создания. Физика и техника полупроводников. 2021. Т. 55. № 12. С. 1105. doi: 10.21883/FTP.2021.12.51690.02. [Shtern, M.Y., Multi-section thermoelements, advantages and problems of their creation, Semiconductors, 2022, vol. 56, no. 4, p. 2098.] https://doi.org/10.21883/SC.2022.14.53847.02
  6. Ouyang, Z. and Li, D., Design of segmented high-performance thermoelectric generators with cost in consideration, Appl. Energy, 2018, vol. 221, p. 112. https://doi.org/10.1016/j.apenergy.2018.03.106
  7. Zhu, Y., Newbrook, D. W., Dai, P., Liu, J., de Groot, C. K., and Huang, R., Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training, Energy and AI, 2023, vol. 12, ID100225. https://doi.org/10.1016/j.egyai.2022.100225
  8. Shtern, M., Rogachev, M., Shtern, Y., Gromov, D., Kozlov, A., and Karavaev, I., Thin-film contact systems for thermocouples operating in a wide temperature range, J. Alloys and Compounds, 2021, vol. 852, p. 156889.
  9. Zhu, L., Sun, D., Li, X., Liu, W., Huang, J., Liang, C., & Hu, X., Electroless plating of iron-group metals and electrochemical comparison for thermoelectric contacts, Solid State Sciences, 2024, vol. 154, p. 107613(1)-107613(7).
  10. Громов, Д.Г., Штерн, Ю.И., Рогачев, М. С. и др. Mo/Ni и Ni/Ta–W–N/Ni тонкопленочные контактные слои для межсоединений термоэлементов на основе (Bi, Sb)2Te3. Неорган. материалы. 2016. Т. 52. № 11. С. 1206. [Gromov, D.G., Shtern, Y.I., Rogachev, M.S., et al., Mo/Ni and Ni/Ta–W–N/Ni thin-film contact layers for (Bi, Sb)2Te3-based intermediate-temperature thermoelectric elements, Inorg. Mater., 2016, vol. 52, p. 1132.] https://doi.org/10.1134/S0020168516110030
  11. Zhang, Z., Gurtaran, M., and Dong, H., Low-Cost Magnesium-Based Thermoelectric Materials: Progress, Challenges, and Enhancements, ACS Appl. Energy Mater., 2024, vol. 7, no. 14, p. 5629. https://doi.org/10.1021/acsaem.4c00961
  12. Ouyang, Z., Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances, Scientific reports, 2016, vol. 6, p. 1.
  13. Arai, K., Matsubara, M., Sawada, Y., Sakamoto, T., Kineri, T., Kogo, Y., Iida, T., and Nishio, K., Improvement of Electrical Contact Between TE Material and Ni Electrode Interfaces by Appli-cation of a Buffer Layer, J. electronic materials, 2012, vol. 41, no. 6, p. 1771.
  14. Gupta, R. P., Xiong, K., White, J. B., Cho, K., Alshareef, H. N., and Gnade, B. E., Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization, J. Electrochem. Soc., 2010, vol. 157, no. 6, p. H666. https://doi.org/10.1149/1.3385154
  15. Asgari, M., Darband, G. B., and Monirvaghefi, M., Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution, Electrochim. Acta, 2023, vol. 446, ID142001.
  16. Lide, D. R., Handbook of Chemistry and Physics CRC Press LLC, 2004, vol. 85, Section 16, p. 2052.
  17. Мельников, П.С. Справочник по гальванопокрытиям в машиностроении. М.: Машиностроение, 1991. 384 с. [Melnikov, P.S., Hanbook of electroplating in mechanical engineering, Moscow: Mechanical engineering, 1991. 384 с.]
  18. Штерн, М.Ю. Наноструктурированные термоэлектрические материалы для температур 200–1200 К, полученные искровым плазменным спеканием. Изв. вузов. Электроника. 2022. Т. 27. № 6. С. 695. [Shtern, M. Yu., Nanostructured thermoelectric materials for temperatures of 200–1200 K obtained by spark plasma sintering, Semiconductors, 2023, vol. 56, no. 13, p. 437.] https://doi.org/10.24151/1561-5405-2022-27-6-695-706
  19. Zoui, M. A., Bentouba, S., Stocholm, J. G., and Bourouis, M., A review on thermoelectric generators: Progress and applications, Energies, 2020, vol. 13, no. 14, p. 3606. https://doi.org/10.3390/en13143606
  20. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv. Mater. Interfaces, 2018, vol. 5, no. 23, ID1801279. https://doi.org/10.1002/admi.201801279
  21. Shtern, M.Y., Karavaev, I.S., Shtern, Y.I., Kozlov, A.O., and Rogachev, M.S., The surface preparation of thermoelectric materials for deposition of thin-film contact systems, Semiconductors, 2019, vol. 53, no. 13, p. 1848. https://doi.org/10.1134/S1063782619130177
  22. Штерн, М.Ю., Караваев, И.С., Рогачев, М.С., Штерн, Ю.И., Мустафоев, Б.Р., Корчагин, Е.П., Козлов, А.О. Методики исследования электрического контактного сопротивления в структуре металлическая пленка – полупроводник. Физика и техника полупроводников. 2022. Т. 56. № 1. C. 1097. [Shtern, M.Y., Karavaev, I.S., Rogachev, M.S., Shtern, Y.I., Mustafoev, B.R., Korchagin, E.P., and Kozlov, A.O., Methods for investigation of the electrical contact resistance in a metal film/semiconductor structure, Fizika i Tekhnika Poluprovodnikov, 2022, vol. 56, no. 1, p. 31.] https://doi.org/ 10.21883/FTP.2022.01.51808.24
  23. Xia, H., Drymiotis, F., Chen, C. L., Wu, A., and Snyder, G. J., Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, J. Mater. Sci., 2014, no. 49, p. 1716.
  24. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv. Mater. Interfaces, 2018, vol. 5, no. 23, ID1801279. https://doi.org/10.1002/admi.201801279
  25. Song, J., Kim, Y., Cho, B. J., Yoo, C. Y., Yoon, H., and Park, S. H., Thermal diffusion barrier metallization based on Co–Mo powder-mixed composites for n-type skutterudite ((Mm, Sm) yCo4Sb12) thermoelectric devices, J. Alloys and Compounds, 2020, vol. 818, ID152917. https://doi.org/10.1016/j.jallcom.2019.152917
  26. Zhang, H., Wei, P., Zhou, C., Li, L., Nie, X., Zhu, W., and Zhao, W., Improved contact performance and thermal stability of Co–Ni alloy barrier layer for bismuth telluride-based thermoelectric devices, J. Mater. Sci.: Materials in Electronics, 2024, vol. 35, no. 10, p. 727. https://doi.org/10.1007/s10854-024-12490-y
  27. Liu, W. and Bai, S., Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module, J. Materiomics, 2019, vol. 5, no. 3, p. 321. https://doi.org/10.1016/j.jmat.2019.04.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of the surface of the films formed on Bi0.4Sb1.6Te3 samples.

Download (620KB)
3. Fig. 2. SEM image of the spall of Bi0.4Sb1.6Te3 (a) and GeTe (b) samples with formed Ni-Mo/Ag contact system after annealing.

Download (270KB)
4. Fig. 3. SEM image of element-by-element mapping of the chipped Bi0.4Sb1.6Te3 sample with formed Ni-Mo/Ag CW after annealing at 600 K: (a) Ag, (b) Ni, (c) Mo, (d) Te, (e) Sb, (f) Bi.

Download (1MB)
5. Fig. 4. SEM image of the element-by-element mapping of the GeTe sample spall with the formed Ni-Mo/Ag CW after annealing at 900 K: (a) Ni, (b) Ag, (c) Te, (d) Ge.

Download (2MB)

Copyright (c) 2025 Russian Academy of Sciences