The influence of the fluoride process of tungsten deposition parameters on the properties of tungsten self-composites obtained by chemical vapor infiltration

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of the parameters of the chemical vapor infiltration process of tungsten powder on the depth of its impregnation, mechanical properties and density of the obtained blanks is studied. It was found that the depth of infiltration depends on the rate of chemical vapor deposition of tungsten, and the maximum bend strength is achieved the sample, obtained at temperature of 450 °C and a gas pressure of 133 mbar. The method of chemical vapor infiltration is promising for the development of technology of additive manufacture of the items made of tungsten and composites based on it.

Авторлар туралы

T. Bukatin

The National University of Science and Technology MISIS

Хат алмасуға жауапты Автор.
Email: bukatin.t@gmail.com
Ресей, Moscow, 119049

D. Karpenkov

The National University of Science and Technology MISIS

Email: bukatin.t@gmail.com
Ресей, Moscow, 119049

V. Dushik

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: bukatin.t@gmail.com
Ресей, Moscow, 119071

D. Ten

The National University of Science and Technology MISIS

Email: bukatin.t@gmail.com
Ресей, Moscow, 119049

Әдебиет тізімі

  1. Zohm H. // Fusion Eng. Des. 2013. V. 88. No. 6—8. P. 428.
  2. https://pubchem.ncbi.nlm.nih.gov/compound/Tungsten.
  3. Kim H., Lee H.J., Kim S.H., Jang C. // Fusion Eng. Des. A. 2016. V. 109—111. P. 590.
  4. Gallardo J.A.G., Giménez M.A.N., Gervasoni J.L. // Ann. Nucl. Energy. 2020. V. 147. Art. No. 107739.
  5. Xie J., Lu H., Lu J. et al. // Surf. Coat. Technol. 2021. V. 409. Art. No. 126884.
  6. Pitts R.A., Bonnin X., Escourbiac F. et al. // Nucl. Mater. Energy. 2019. V. 20. Art. No. 100696.
  7. Хорьков К.С., Абрамов В.Д., Кочуев Д.А. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1619; Khorkov K.S., Abramov V.D., Kochuev D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 12. P. 1429.
  8. Bachmann C., Arbeiter F., Boccaccini L.V. et al. // Fusion Eng. Des. 2016. V. 112. P. 527.
  9. Harutyunyan Z., Ogorodnikova O., Gasparyan Y. et al. // J. Nucl. Mater. 2022. V. 567. No. 153811.
  10. Marinelli G., Martina F., Lewtas H. et al. // J. Nucl. Mater. 2019. V. 522. P. 45.
  11. Крат С.А., Фефелова Е.А., Пришвицын А.С. и др. // Изв. РАН Сер. физ. 2022. Т. 86. № 5. С. 627; Krat S.A., Fefelova E.A., Prishvitsyn A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 521.
  12. Jasper B., Coenen J.W., Riesch J. et al. // Mater. Sci. Forum. 2015. V. 825. P. 125.
  13. Dong Z., Ma Z., Yu L. et al. // Nature Commun. 2021. V. 12. P. 5052.
  14. Rieth M., Dudarev S.L., De Vicente S.G. et al. // J. Nucl. Mater. 2013. V. 432. No. 1—3. P. 482.
  15. Puma G.L., Bono A., Krishnaiah D., Collin J.G. // J. Hazard. Mater. 2008. V. 157. No. 2—3. P. 209.
  16. Fotovvati B., Namdari N., Dehghanghadikolaei A. // J. Manuf. Mater. Process. 2019. V. 3. No. 1. P. 28.
  17. Tamura S., Tokunaga K., Yoshida N. // J. Nucl. Mater. 2002. V. 307. P. 735.
  18. Song J., Yu Y., Zhuang Z. et al. // J. Nucl. Mater. 2013. V. 442(1—3). P. S208.
  19. Murphy J.D., Giannattasio A., Yao Z. et al. // J. Nucl. Mater. 2009. V. 386. P. 583.
  20. Angelescu D. E., Schroeder R. J. Технология изготовления металлических устройств со встроенными оптическими элементами, оптическими устройствами или оптическими и электрическими вводами. Патент США № 20100041155A1. 2008.
  21. Raumann L., Coenen J.W., Riesch J. et al. // Surf. Coat. Technol. 2020. V. 381. Art. No. 124745.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024