The influence of the fluoride process of tungsten deposition parameters on the properties of tungsten self-composites obtained by chemical vapor infiltration
- Autores: Bukatin T.N.1, Karpenkov D.Y.1, Dushik V.V.2, Ten D.V.1
-
Afiliações:
- The National University of Science and Technology MISIS
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Edição: Volume 88, Nº 5 (2024)
- Páginas: 760-766
- Seção: Physics of ferroelectrics
- URL: https://edgccjournal.org/0367-6765/article/view/654682
- DOI: https://doi.org/10.31857/S0367676524050112
- EDN: https://elibrary.ru/OWWIZF
- ID: 654682
Citar
Resumo
The influence of the parameters of the chemical vapor infiltration process of tungsten powder on the depth of its impregnation, mechanical properties and density of the obtained blanks is studied. It was found that the depth of infiltration depends on the rate of chemical vapor deposition of tungsten, and the maximum bend strength is achieved the sample, obtained at temperature of 450 °C and a gas pressure of 133 mbar. The method of chemical vapor infiltration is promising for the development of technology of additive manufacture of the items made of tungsten and composites based on it.
Palavras-chave
Sobre autores
T. Bukatin
The National University of Science and Technology MISIS
Autor responsável pela correspondência
Email: bukatin.t@gmail.com
Rússia, Moscow, 119049
D. Karpenkov
The National University of Science and Technology MISIS
Email: bukatin.t@gmail.com
Rússia, Moscow, 119049
V. Dushik
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: bukatin.t@gmail.com
Rússia, Moscow, 119071
D. Ten
The National University of Science and Technology MISIS
Email: bukatin.t@gmail.com
Rússia, Moscow, 119049
Bibliografia
- Zohm H. // Fusion Eng. Des. 2013. V. 88. No. 6—8. P. 428.
- https://pubchem.ncbi.nlm.nih.gov/compound/Tungsten.
- Kim H., Lee H.J., Kim S.H., Jang C. // Fusion Eng. Des. A. 2016. V. 109—111. P. 590.
- Gallardo J.A.G., Giménez M.A.N., Gervasoni J.L. // Ann. Nucl. Energy. 2020. V. 147. Art. No. 107739.
- Xie J., Lu H., Lu J. et al. // Surf. Coat. Technol. 2021. V. 409. Art. No. 126884.
- Pitts R.A., Bonnin X., Escourbiac F. et al. // Nucl. Mater. Energy. 2019. V. 20. Art. No. 100696.
- Хорьков К.С., Абрамов В.Д., Кочуев Д.А. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1619; Khorkov K.S., Abramov V.D., Kochuev D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 12. P. 1429.
- Bachmann C., Arbeiter F., Boccaccini L.V. et al. // Fusion Eng. Des. 2016. V. 112. P. 527.
- Harutyunyan Z., Ogorodnikova O., Gasparyan Y. et al. // J. Nucl. Mater. 2022. V. 567. No. 153811.
- Marinelli G., Martina F., Lewtas H. et al. // J. Nucl. Mater. 2019. V. 522. P. 45.
- Крат С.А., Фефелова Е.А., Пришвицын А.С. и др. // Изв. РАН Сер. физ. 2022. Т. 86. № 5. С. 627; Krat S.A., Fefelova E.A., Prishvitsyn A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 521.
- Jasper B., Coenen J.W., Riesch J. et al. // Mater. Sci. Forum. 2015. V. 825. P. 125.
- Dong Z., Ma Z., Yu L. et al. // Nature Commun. 2021. V. 12. P. 5052.
- Rieth M., Dudarev S.L., De Vicente S.G. et al. // J. Nucl. Mater. 2013. V. 432. No. 1—3. P. 482.
- Puma G.L., Bono A., Krishnaiah D., Collin J.G. // J. Hazard. Mater. 2008. V. 157. No. 2—3. P. 209.
- Fotovvati B., Namdari N., Dehghanghadikolaei A. // J. Manuf. Mater. Process. 2019. V. 3. No. 1. P. 28.
- Tamura S., Tokunaga K., Yoshida N. // J. Nucl. Mater. 2002. V. 307. P. 735.
- Song J., Yu Y., Zhuang Z. et al. // J. Nucl. Mater. 2013. V. 442(1—3). P. S208.
- Murphy J.D., Giannattasio A., Yao Z. et al. // J. Nucl. Mater. 2009. V. 386. P. 583.
- Angelescu D. E., Schroeder R. J. Технология изготовления металлических устройств со встроенными оптическими элементами, оптическими устройствами или оптическими и электрическими вводами. Патент США № 20100041155A1. 2008.
- Raumann L., Coenen J.W., Riesch J. et al. // Surf. Coat. Technol. 2020. V. 381. Art. No. 124745.
Arquivos suplementares
