The influence of the fluoride process of tungsten deposition parameters on the properties of tungsten self-composites obtained by chemical vapor infiltration

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the parameters of the chemical vapor infiltration process of tungsten powder on the depth of its impregnation, mechanical properties and density of the obtained blanks is studied. It was found that the depth of infiltration depends on the rate of chemical vapor deposition of tungsten, and the maximum bend strength is achieved the sample, obtained at temperature of 450 °C and a gas pressure of 133 mbar. The method of chemical vapor infiltration is promising for the development of technology of additive manufacture of the items made of tungsten and composites based on it.

Sobre autores

T. Bukatin

The National University of Science and Technology MISIS

Autor responsável pela correspondência
Email: bukatin.t@gmail.com
Rússia, Moscow, 119049

D. Karpenkov

The National University of Science and Technology MISIS

Email: bukatin.t@gmail.com
Rússia, Moscow, 119049

V. Dushik

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: bukatin.t@gmail.com
Rússia, Moscow, 119071

D. Ten

The National University of Science and Technology MISIS

Email: bukatin.t@gmail.com
Rússia, Moscow, 119049

Bibliografia

  1. Zohm H. // Fusion Eng. Des. 2013. V. 88. No. 6—8. P. 428.
  2. https://pubchem.ncbi.nlm.nih.gov/compound/Tungsten.
  3. Kim H., Lee H.J., Kim S.H., Jang C. // Fusion Eng. Des. A. 2016. V. 109—111. P. 590.
  4. Gallardo J.A.G., Giménez M.A.N., Gervasoni J.L. // Ann. Nucl. Energy. 2020. V. 147. Art. No. 107739.
  5. Xie J., Lu H., Lu J. et al. // Surf. Coat. Technol. 2021. V. 409. Art. No. 126884.
  6. Pitts R.A., Bonnin X., Escourbiac F. et al. // Nucl. Mater. Energy. 2019. V. 20. Art. No. 100696.
  7. Хорьков К.С., Абрамов В.Д., Кочуев Д.А. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1619; Khorkov K.S., Abramov V.D., Kochuev D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 12. P. 1429.
  8. Bachmann C., Arbeiter F., Boccaccini L.V. et al. // Fusion Eng. Des. 2016. V. 112. P. 527.
  9. Harutyunyan Z., Ogorodnikova O., Gasparyan Y. et al. // J. Nucl. Mater. 2022. V. 567. No. 153811.
  10. Marinelli G., Martina F., Lewtas H. et al. // J. Nucl. Mater. 2019. V. 522. P. 45.
  11. Крат С.А., Фефелова Е.А., Пришвицын А.С. и др. // Изв. РАН Сер. физ. 2022. Т. 86. № 5. С. 627; Krat S.A., Fefelova E.A., Prishvitsyn A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 521.
  12. Jasper B., Coenen J.W., Riesch J. et al. // Mater. Sci. Forum. 2015. V. 825. P. 125.
  13. Dong Z., Ma Z., Yu L. et al. // Nature Commun. 2021. V. 12. P. 5052.
  14. Rieth M., Dudarev S.L., De Vicente S.G. et al. // J. Nucl. Mater. 2013. V. 432. No. 1—3. P. 482.
  15. Puma G.L., Bono A., Krishnaiah D., Collin J.G. // J. Hazard. Mater. 2008. V. 157. No. 2—3. P. 209.
  16. Fotovvati B., Namdari N., Dehghanghadikolaei A. // J. Manuf. Mater. Process. 2019. V. 3. No. 1. P. 28.
  17. Tamura S., Tokunaga K., Yoshida N. // J. Nucl. Mater. 2002. V. 307. P. 735.
  18. Song J., Yu Y., Zhuang Z. et al. // J. Nucl. Mater. 2013. V. 442(1—3). P. S208.
  19. Murphy J.D., Giannattasio A., Yao Z. et al. // J. Nucl. Mater. 2009. V. 386. P. 583.
  20. Angelescu D. E., Schroeder R. J. Технология изготовления металлических устройств со встроенными оптическими элементами, оптическими устройствами или оптическими и электрическими вводами. Патент США № 20100041155A1. 2008.
  21. Raumann L., Coenen J.W., Riesch J. et al. // Surf. Coat. Technol. 2020. V. 381. Art. No. 124745.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024